화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.6, 612-623, December, 2020
Alcaligenes sp.와 Pseudomonas sp.의 공동배양조건에서 박테리아 생장 및 인제거에 미치는 두 종 중금속의 상호적인 독성효과 평가
Evaluation for Interactive Toxic Effects of Binary Heavy Metals on Bacterial Growth and Phosphorus Removal under Co-Culture Condition of Alcaligenes sp. and Pseudomonas sp.
E-mail:
초록
본 연구는 Alcaligenes sp.와 Pseudomonas sp. 균주를 2종 혼합 배양 시, 혼합균주의 생장 및 인 제거에 5종의 중금속(Cd, Cu, Zn, Pb, Ni)이 미치는 저해효과를 정량적으로 평가하고자 수행되었다. 단일 중금속 처리 시 중금속별 Alcaligenes sp.와 Pseudomonas sp. 균주의 IC50는 Cd 0.75 mg/L, Cu 10.93 mg/L, Zn 7.08 mg/L, Pb 13.3 mg/L, Ni 15.78 mg/L 인 것으로 나타났다. 중금속 2종 처리 시 IC50는 Cd + Cu 처리구에서 가장 낮은 농도를 보였고, Ni + Pb 처리구에서 가장 높은 농도를 보였다. 단일 중금속 처리 시 중금속별 EC50 값은 Cd 0.54 mg/L, Cu 11.08 mg/L, Zn 6.14 mg/L, Pb 9.33 mg/L 및 Ni 13.81 mg/L이었다. 2종의 중금속 혼합 처리구별 EC50은 Cd + Zn 처리구에서 가장 낮은 농도, Zn + Ni 처리구에서 가장 높은 농도를 보였다. 2종 혼합 균주에 대한 2종 중금속 처리 결과 도출된 IC50 및 EC50 값을 기반중금속 별 상호작용 평가 결과, 대부분 길항작용을 보이는 것으로 나타났으나, Cu + Ni 처리구에서는 상승작용을 보이는 것이 확인되었다. 따라서 본 연구 결과는 미생물을 이용한 오폐수 정화 처리 시 미생물의 성장 및 인 제거에 미치는 중금속의 독성으로 인한 저해효과에 대한 기초 자료를 제공할 수 있을 것으로 판단된다.
This study was initiated to quantitatively evaluate the inhibitory effects of five heavy metals (Cd, Cu, Zn, Pb, Ni) on bacterial growth and phosphorus removal in the binary culture of Alcaligenes sp. plus Pseudomonas sp. IC50 values of Alcaligenes sp. plus Pseudomonas sp. for Cd, Cu, Zn, Pb, and Ni were 0.75, 10.93, 7.08, 13.30, and 15.78 mg/L, respectively. For the binary treatments of heavy metals, IC50 was the lowest in the treatment of Cd + Cu, whereas, it was the highest in the Ni + Pb treatment. The EC50 values for Cd, Cu, Zn, Pb, and Ni were 0.54, 11.08, 6.14, 9.33, and 13.81 mg/L, respectively. For the binary treatments of heavy metals, EC50 was the lowest in the Cd + Zn, whereas, the highest in the Zn + Ni. Based on both IC50 and EC50 values for the binary culture of bacteria with the binary mixtures of heavy metals, the most interactive effect was found to be antagonistic, though the only synergistic effect was found in Cu + Ni treatment. Therefore, our results can provide basic data on the toxic effects of heavy metals on the bacterial growth and phosphorus removal in the wastewater treatment process.
  1. Grady CPL, Henry CL, Daigger GT, Biological Wastewater Treatment, 2nd Ed., 104-107, Marcel Dekker, USA (1999).
  2. Herschy RW, Encyclopedia of Lakes and Reservoirs, 233-234, Springer Netherlands, Dordrecht (2012).
  3. Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL, Reis MA, Water Res., 41(11), 2271 (2007)
  4. Comeau Y, Hall KJ, Hancock REW, Oldham WK, Water Res., 20, 1511 (1986)
  5. Drizo A, Frost CA, Grace J, Smith KA, Water Res., 33, 3595 (1999)
  6. Sedlak RI, Phosphorus and Nitrogen Removal from Municipal Wastewater, 2nd Ed., Lewis Publishers, USA (1991).
  7. Yu MY, Park JJ, Hwang SJ, Cyanobacteria synechococcus sp., J. Korea Soc. Waste Manag., 36(8), 731-736 (2018).
  8. Zuthi MFR, Guo WS, Ngo HH, Nghiem LD, Hai FI, Bioresour. Technol., 139, 363 (2013)
  9. Khoshmanesh A, Hart BT, Duncan A, Beckett R, Water Res., 36, 774 (2002)
  10. Levin GV, Sharpiro J, Water Pollut. Control Fed., 37, 800 (1965)
  11. Mino T, Tsuzuki Y, Matsuo T, Effect of Phosphorus Accumulation on Acetate Metabolism in the Biological Phosphorus Removal Process, IAWPRC, United Kingdom, 27-38 (1987).
  12. Mino T, Van Loosdrecht MCM, Heijnen JJ, Water Res., 32, 3193 (1998)
  13. Wentzel MC, Dold PL, Ekama GA, Marais GR, Water Sci. Technol., 15, 89 (1989)
  14. Barnard JL, Pollut. Control Fed., 72, 705 (1973)
  15. George T, Franklin LB, Stensel HD, Wastewater Engeineering : Treatment and Reuse, 4th Ed., McGraw-Hill, USA (2004).
  16. Kim KS, Seo GT, Lee KH, Kim NJ, J. Korean Soc. Water Environ., 18, 123 (2002)
  17. Wang Y, Li J, Jia W, Wang N, Wnag H, Zhang S, Chen G, Desalin. Water Treat., 52(25-27), 5144 (2014)
  18. Chen Y, Li B, Ye L, Peng Y, Biochem. Eng. J., 93, 235 (2015)
  19. Izadi P, Izadi P, Eldyasti A, Rev. Environ. Sci. Biotechnol., 19, 561 (2020)
  20. Park YS, Park HT, Kim DS, J. Environ. Health Sci., 13, 340 (2005)
  21. Jung MC, Jung MY, Choi YW, Econ. Environ. Geol., 31, 23 (2004)
  22. Ahmed MJK, Ahmaruzzaman M, J. Water Process Eng., 10, 39 (2016)
  23. Cunningham SD, Ow DW, Plant Physiol., 110, 715 (1996)
  24. Vareda JP, Valente AJ, Duraes L, J. Environ. Manage., 246, 101 (2019)
  25. Park SH, Choi SI, Park JB, Han HK, Bae SD, Sung IJ, Park ER, J. Soil Groundw. Environ., 16(5), 1 (2011)
  26. Lee JW, Ryu HM, Heo S, Hwang UK, Brachionus Plicatilis, Korean J. Environ. Biol., 34, 193-200 (2016).
  27. Hassen A, Saidi N, Cherif M, Boudabous A, Bioresour. Technol., 64(1), 7 (1998)
  28. Prabhakaran P, Ashraf MA, Aqma WS, RSC Advances, 6(111), 109862 (2016)
  29. Konopka A, Zakharova T, J. Microbiol. Methods, 37, 17 (1999)
  30. Yilmaz EI, Res. Microbiol., 154, 409-415 (2003).
  31. An YJ, Kim YM, Kwon TI, Jeong SW, Sci. Total Environ., 326, 85 (2004)
  32. Di Cesare A, Eckert E, Corno G, J. Limnol., 75, 59 (2016)
  33. Kong IC, J. Environ. Sci., 25, 889 (2013)
  34. Liu X, Zhang S, Shan X, Christie P, Ecotox. Environ. Safe., 68, 305 (2007)
  35. Xu X, Li Y, Wang Y, Wang Y, Toxicol. in Vitro, 25, 295-300 (2011).
  36. Lewis SS, Klerks PL, Leberg PL, Aquat. Toxicol., 52, 205 (2001)
  37. Mulvey M, Newman MC, Vogelbein WK, Unger MA, Ownby DR, Environ. Toxicol. Chem., 22, 671 (2003)
  38. Philips NR, Hickey CW, Sphaerium novaezelandiae, Aquatic Toxicol., 99, 507-513 (2010).
  39. Horvat T, Vidakovi´c-Cifrek Z, Orescanin V, Tkalec M, Pevalek-Kozlina B, Sci. Total Environ., 384, 229 (2007)
  40. Otitoloju AA, Ecotox. Environ. Safe., 53, 404 (2002)
  41. Alia N, Sardar K, Said M, Salma K, Sadia A, Sadaf S, Miklas S, J. Environ. Res., 12(7), 7400 (2015)
  42. Kim HJ, Lee SE, Hong HK, Kim DH, An JW, et al., Korean J. Environ. Agri., 31, 185 (2012)
  43. Kim HJ, Yoo RB, Han SS, Woo SH, Lee MS, Baek KT, Chung KY, Korean J. Environ. Agri., 29, 189 (2010)
  44. Yoo RB, Kim HJ, Lee SE, Lee MS, Woo SH, Choi JS, Baek KT, Chung KY, Korean J. Environ. Agri., 30, 216 (2011)
  45. Zafiri C, Kornaros M, Lyberatos G, Water Res., 33, 2769 (1999)
  46. Asami M, Suzuki N, Nakanishi J, Water Sci. Tech., 33, 121 (1996)
  47. Chen CY, Huang JB, Chen SD, Water Sci. Tech., 36, 375 (1997)
  48. Lange JH, Thomulka KW, Ecotox. Environ. Safe., 38, 2 (1997)
  49. Ding S, Wu J, Zhang M, Lu H, Mahmood Q, Zheng P, Chemosphere, 140, 174 (2015)
  50. Buhl KJ, Hamilton SJ, Ecotox. Environ. Safe., 38, 296 (1997)
  51. Tao S, Liang T, Cao J, Dawson RW, Liu C, Ecotox. Environ. Safe., 44, 190 (1999)
  52. Sharma SS, Schat H, Vooijs R, Van Heerwaarden LM, Environ. Toxicol. Chem., 18, 348 (1999)
  53. Shopsis C, Cell Biol. Toxicol., 10, 191 (1994)
  54. Alimohamadi FE, Separovic F, Barrow CJ, Cherny RA, Fraser F, Bush AI, Masters CL, Barnhan KJ, J. Pept. Sci., 11, 353 (2005)
  55. Bao VWW, Leung KMY, Kwok KWH, Zhang AQ, Lui GCS, Mar. Pollut. Bull., 57, 616 (2008)
  56. Zhang ZZ, Zhang QQ, Xu JJ, Deng R, Ji ZQ, Wu YH, Jin RC, Bioresour. Technol., 200, 208 (2016)