Applied Chemistry for Engineering, Vol.31, No.6, 646-652, December, 2020
V/Sb/TiO2 촉매에서 Sb 소성온도에 따른 NH3-SCR 효율 영향 연구
Study on the Effect of NH3-Selective Catalytic Reduction Efficiency according to Sb Calcination Temperature in V/Sb/TiO2 Catalyst
E-mail:
초록
본 연구는 200~500 ℃ 영역에서 NOx를 제어하기 위한 NH3-SCR 실험을 수행하였다. V/Sb/TiO2 조성의 촉매에서 Sb/TiO2 의 소성온도를 다르게 하여 반응활성 실험을 진행하였다. 그 결과 Sb/TiO2의 소성온도가 600 ℃일 때, 가장 효율이 우수하였으며, 특히 반응온도 250 ℃에서 NOx 전환율이 80% 가까이 나오는 것을 확인할 수 있었다. 이와 같이 다른 소성온도로 제조하였을 때 활성증진의 원인을 도출하기 위하여 H2-TPR, XRD, BET, Raman, XPS 분석을 진행하였다. 그 결과 활성이 우수하였던 Sb/TiO2의 소성온도를 600 ℃로 제조하였을 때, VSbO4가 생성되는 것을 확인하였으며, 이 종이 생성됨으로써 V의 비 화학양론종이 증가하여 V/Sb/TiO2의 NOx 전환율이 우수한 것으로 판단된다.
In this study, an NH3-selective catalytic reduction (SCR) experiment was performed to control NOx in the temperature range of 200~500 ℃. The reaction activity experiment was conducted by varying the firing temperature of Sb/TiO2 when using V/Sb/TiO2 composite as a catalyst. As a result, when the sintering temperature of Sb/TiO2 was 600 ℃, the efficiency was the best, and it was confirmed that the NOx conversion rate was close to 80% at the reaction temperature of 250 ℃. H2-temperature programmed reduction (TPR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses were employed to derive the cause of the activity enhancement when prepared at different firing temperatures as described above. As a result, when the sintering temperature of Sb/TiO2, which showed an excellent activity, was prepared at 600 ℃, it was confirmed that VSbO4 was generated. This indicates that the non-stoichiometric species of V increased, resulting in the excellent NOx conversion rate of V/Sb/TiO2.
- Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL, Catal. Today, 100(3-4), 217 (2005)
- Chang H, Jong MT, Wang C, Qu R, Du Y, Li J, Hao J, Environ. Sci. Technol., 47(20), 11692 (2013)
- Bosch H, Janssen F, Catal. Today, 2(4), 369 (1990)
- Forzatti P, Catal. Today, 62(1), 51 (2000)
- Centeno MA, Carrizosa I, Odriozola JA, Appl. Catal. B: Environ., 29(4), 307 (2001)
- Bond GC, Tahir SF, Catal. Today, 10, 393 (1990)
- Wang CZ, Yang SJ, Chang HZ, Peng Y, Li JH, Chem. Eng. J., 225, 520 (2013)
- Yue P, Kezhi L, Junhua L, Appl. Catal. B: Environ., 140-141, 483 (2013)
- Zhiming L, Junzhi Z, Shaoxuan Z, Lingling M, Seong W, Catal. Commun., 46, 90 (2014)
- Choo ST, Yim SD, Nam IS, Ham SW, Lee JB, Appl. Catal. B: Environ., 44(3), 237 (2003)
- Kobayashi M, Hagi M, Appl. Catal. B: Environ., 63(1-2), 104 (2006)
- Amiridis MD, Wachs IE, Deo G, Jehng JM, Kim DS, J. Catal., 161(1), 247 (1996)
- Youn S, Song I, Kim DH, J. Nanosci. Nanotechnol., 16, 4350 (2016)
- Lee KJ, Kumar PA, Maqbool MS, Rao KN, Song KH, Ha HP, Appl. Catal. B: Environ., 142-143, 705 (2013)
- Phil HH, Reddy MP, Kumar PA, Ju LK, Hyo JS, Appl. Catal. B: Environ., 78(3-4), 301 (2008)
- Yang NZ, Guo RT, Pan WG, Chen QL, Wang QS, Lu CZ, Fuel, 169, 87 (2016)
- Shin JH, Hong SC, Appl. Chem. Eng., 31(2), 200 (2020)
- Barbaro A, Larrondo S, Duhalde S, Amadeo N, Appl. Catal. A: Gen., 193(1-2), 277 (2000)
- Larrondo S, Irigoyen B, Baronetti G, Amadeo N, Appl. Catal. A: Gen., 250(2), 279 (2003)
- Kim DH, Kwon DW, Hong SC, Appl. Surf. Sci., 538, 148088 (2021)
- Beale AM, Gonzalez IL, Maunula T, Palgrave RG, Catal. Struct. React., 1, 25 (2015)
- Topsoe NY, Dumesic JA, Topsoe H, J. Catal., 151(1), 241 (1995)
- Choung JW, Nam IS, Ham SW, Catal. Today, 111(3-4), 242 (2006)
- Vuurman MA, Wachs IE, Hirt AM, J. Phys. Chem., 95, 9928 (1991)
- Montilla F, Morallon E, De Battisti A, Barison S, Daolio S, Vazquez JL, J. Phys. Chem. B, 108(41), 15976 (2004)
- Krishnakumar T, Jayaprakash R, Pinna N, Phani AR, Passacantando M, Santucci S, J. Phys. Chem. Solids, 70, 993 (2009)
- Choi SH, Cho SP, Lee JY, Hong SH, Hong SC, Hong SI, J. Mol. Catal. A-Chem., 304(1-2), 166 (2009)
- Topsoe NY, Dumesic JA, Topsoe H, J. Catal., 151(1), 241 (1995)