화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.6, 674-678, December, 2020
La2O3가 첨가된 Pd/TiO2 촉매의 개발 및 H2 상온산화 반응에서의 성능 향상 연구
Development of Pd/TiO2 Catalysts with La2O3 Addition and Study on the Performance Improvement of H2 Oxidation at Room Temperature
E-mail:
초록
본 연구에서는 상온 조건에서 추가적인 에너지원 없이 H2 산화가 가능한 Pd/TiO2 촉매를 제조하였고, 지지체인 TiO2의 비표면적은 Pd/TiO2 촉매의 H2 산화 반응 성능과 비례하지는 않은 것을 확인하였다. 또한 촉매의 물성 변화에 의한 성능 영향 평가를 위하여 La2O3를 Pd/TiO2 촉매에 첨가하였다. La2O3를 TiO2에 함량별로 첨가하여 Pd/La2O3-TiO2를 제조하였고, CO chemisorption 분석을 진행하였다. Pd/TiO2(G) 촉매의 전환율(14% at 0.5% H2)과 비교하여 Pd/La2O3-TiO2 촉매가 74% 전환율로 5배 이상의 성능 증진이 나타났다. Pd/La2O3-TiO2 촉매는 활성금속인 Pd의 metal dispersion이 클수록 H2 산화반응에 유리한 것으로 분석되었다. 하지만 첨가되는 La2O3가 10%를 초과하게 되면 촉매 성능이 다시 감소하는 것을 알 수 있었다. 마지막으로 Pd/La2O3-TiO2 촉매의 물성이 지배적인 영향을 미치는 것은 주입되는 H2가 0.3~0.5% 농도 조건까지이며, 1% 이상의 H2 농도부터는 물질전달이 촉매 반응속도를 지배하는 것으로 판단된다.
In this study, a Pd/TiO2 catalyst which oxidized H2 at room temperature without an additional energy source was prepared. And a specific surface area of TiO2 as a support was not proportional to H2 oxidation reaction performance of Pd/TiO2 catalyst. In addition La2O3 was added to Pd/TiO2 catalyst in order to evaluate the performance effect due to the change of catalysts physical properties. A Pd/La2O3-TiO2 was prepared by adding different amounts of La2O3 to TiO2 and CO chemisorption analysis was performed. Compared to the conversion rate (14% at 0.5% H2) of the Pd/TiO2(G) catalyst, the Pd/La2O3-TiO2 catalyst showed 74% which was improved by more than five times. It was found that the larger the metal dispersion of Pd as an active metal is, the more favorable to H2 oxidation reaction is. However, when the added La2O3 amount exceeded 10%, the catalyst performance decreased again. Finally, it was concluded that the physical properties of the Pd/La2O3-TiO2 catalyst have a dominant influence on the catalytic activity until 0.3~0.5% of injected H2 concentrations and the catalyst reaction rate was controlled by substance transfer from 1% or more concentrations of H2.
  1. Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR, Energy Environ. Sci., 12, 463 (2019)
  2. Reinecke EA, Tragsdorf IM, Gierling K, Nucl. Eng. Des., 230, 49 (2004)
  3. Kelm S, Schoppe L, Dornseiffer J, Hofmann D, Reinecke EA, Leistner F, Juhe S, Nucl. Eng. Des., 239, 274 (2009)
  4. Tauster SJ, Fung SC, Baker RT, Horsley JA, Science, 211, 1121 (1981)
  5. Liotta LF, Deganello G, Delichere P, Leclercq C, Martin GA, J. Catal., 164(2), 334 (1996)
  6. Ahn IY, Kim WJ, Moon SH, Appl. Catal. A: Gen., 308, 75 (2006)
  7. Fleisch TH, Hicks RF, Bell AT, J. Catal., 87, 398 (1984)
  8. Hicks RF, Bell AT, J. Catal., 89, 498 (1984)
  9. Kang YS, Kim SS, Kim GJ, Hong SC, J. Chem. Eng. Jpn., 49(5), 460 (2016)
  10. Panagiotopoulou P, Kondarides DI, J. Catal., 225(2), 327 (2004)
  11. Santos VP, Carabineiro SAC, Tavares PB, Pereira MFR, Orfao JJM, Figueiredo JL, Appl. Catal. B: Environ., 99(1-2), 198 (2010)
  12. Singh SA, Vishwanath K, Madras G, ACS Appl. Mater. Interfaces, 9, 19380 (2017)
  13. Choi HJ, Kim SS, Hong SC, J. Air Waste Manage. Assoc., 62, 362 (2012)
  14. Kim SS, Park KH, Hong SC, Appl. Catal. A: Gen., 398(1-2), 96 (2011)
  15. Yang C, Ren J, Sun YH, Catal. Lett., 84(1-2), 123 (2002)
  16. Kim DH, Seo PW, Hong SC, Clean Technol., 23(1), 64 (2017)
  17. Kim SS, Lee HH, Hong SC, Appl. Catal. B: Environ., 119-120, 100 (2012)
  18. Seo PW, Cho SP, Hong SH, Hong SC, Appl. Catal. A: Gen., 380(1-2), 21 (2010)