Korean Journal of Materials Research, Vol.30, No.11, 615-620, November, 2020
마이크로파 조사 시간에 따른 InGaZnO 박막 트랜지스터의 전기적 특성 평가
The Effect of Microwave Annealing Time on the Electrical Characteristics for InGaZnO Thin-Film Transistors
E-mail:,
Oxide semiconductor, represented by a-IGZO, has been commercialized in the market as active layer of TFTs of display backplanes due to its various advantages over a-Si. a-IGZO can be deposited at room temperature by RF magnetron sputtering process; however, additional thermal annealing above 300oC is required to obtain good semiconducting properties and stability. These temperature are too high for common flexible substrates like PET, PEN, and PI. In this work, effects of microwave annealing time on IGZO thin film and associated thin-film transistors are demonstrated. As the microwave annealing time increases, the electrical properties of a-IGZO TFT improve to a degree similar to that during thermal annealing. Optimal microwave annealed IGZO TFT exhibits mobility, SS, Vth, and VH of 6.45 cm2/Vs, 0.17 V/dec, 1.53 V, and 0.47 V, respectively. PBS and NBS stability tests confirm that microwave annealing can effectively improve the interface between the dielectric and the active layer.
- Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H, Nature, 432, 488 (2004)
- Nomura K, Takagi A, Kamiya T, Ohta H, Hirano M, Hosono H, Jpn. J. Appl. Phys., 45, 4303 (2006)
- Kamiya T, Nomura K, Hosono H, Jpn. J. Appl. Phys., 11, 044305 (2010)
- Lee JH, Kim DH, Yang DJ, Hong SY, et al., SID 08 Dig., 39, 625 (2008)
- Arai T, J. Soc. Inf. Dis., 20, 156 (2012)
- Park JS, Maeng WJ, Kim HS, Park JS, Thin Solid Films, 520(6), 1679 (2012)
- Zan HW, Chen WT, Chou CW, Tsai CC, Huang CN, Hsueh HW, Electrochem. Solid State Lett., 13(5), H144 (2010)
- Stanford MG, Noh JH, Mahady K, Ievlev AV, Maksymovych P, Ovchinnikova OS, Rack PD, ACS Appl. Mater. Interfaces, 9, 35125 (2017)
- Liu C, Sun Y, Qin H, Liu Y, Wei S, Zhao Y, IEEE Electron Device Lett., 40, 415 (2019)
- Sheng J, Lee HJ, Oh S, Park JS, ACS Appl. Mater. Interfaces, 8, 33821 (2016)
- Park JW, Kang BH, Kim HJ, Adv. Funct. Mater., 30, 190463 (2020)
- Hur JS, Kim JO, Kim HA, Jeong JK, ACS Appl. Mater. Interfaces, 11, 21675 (2019)
- Cheng HC, Tsay CY, J. Alloy. Compd., 507, L1 (2010)
- Jang SC, Park J, Kim HD, Hong H, Chung KB, Kim YJ, Kim HS, AIP Adv., 9, 025204 (2019)
- Lee IK, Lee KH, Lee S, Cho WJ, ACS Appl. Mater. Interfaces, 6, 22680 (2014)
- Saenz-Trevizo A, Amezaga-Madrid P, Piza-Ruiz P, Antunez-Flores W, Miki-Yoshida M, Mater. Res., 19, 33 (2016)
- Tauc J, Grigorovici R, Vancu A, Phys. Status Solidi B, 15, 627 (1966)
- Suresh A, Muth J, Appl. Phys. Lett., 92, 033502 (2008)
- Su J, Yang H, Ma Y, Li R, Jia L, Liu D, Zhang X, Mater. Sci. Semicond. Process, 113, 105040 (2020)
- Jeong JK,Yang HW, Jeong JH, Mo YG, Kim HD, Appl. Phys. Lett., 93, 123508 (2008)