화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.12, 1142-1148, November, 2020
Morphology and Mechanical Properties of the Polyketone/Polycarbonate Blends Compatibilized with Polyamides
E-mail:
To enhance impact strength of polyketone (PK) without loss of stiffness, PK was blended with polycarbonate (PC) via melt mixing. Three types of polyamides (PAs) with varying structures, - polyamide 6 (PA6), polyamide 612 (PA612), polyamide 12 (PA12) - were employed as polymeric compatibilizers. To elucidate the effect of the structure of PAs on the compatibilization, morphology, mechanical properties, and fracture behavior of the blends were investigated. The addition of PA6 and PA612 reduced the size of dispersed particles by encapsulating the PC phase, while PA12 was found not to affect the morphology of the PK/PC blend. The change in particle size, glass transition temperature (Tg), and elongation at break exhibited that PA6 was the most effective compatibilizer for the PK/PC blends of this study. These results were interpreted with the change in interfacial tension between PK and PA due to the difference in polarity of the PAs. It was found that the impact strength was not highest in the blend with the smallest particle size. The observation of sub-surface damage zone also indicated that effective toughening by intensive crazing in polymer blends requires dispersed particles of optimum size.
  1. Sommazzi A, Garbassi F, Prog. Polym. Sci, 22, 1547 (1997)
  2. Unal H, Mimaroglu A, Arda T, Appl. Surf. Sci., 252(23), 8139 (2006)
  3. Marklund E, Gedde UW, Hedenqvist MS, Wiberg G, Polymer, 42(7), 3153 (2001)
  4. Del Nobile MA, Mensitieri G, Nicolais L, Sommazzi A, Garbassi F, J. Appl. Polym. Sci., 50, 1261 (1993)
  5. Zuiderduin WCJ, Vlasveld DPN, Huetink J, Gaymans RJ, Polymer, 46(23), 10321 (2005)
  6. Kim Y, Lee CS, Kim S, Jung H, Jho JY, Macromol. Res., 23(10), 965 (2015)
  7. Gergen WP, Lutz RG, US Patent 5,071,916 (1991).
  8. Danforth RL, Handlin DL, Gergen WP, Lutz RG, US Patent 4,851,482 (1989).
  9. Gergen WP, Hart WWC, US Patent 4,960,838 (1990).
  10. Asano A, Nishioka M, Takahashi Y, Kato A, Hikasa S, Iwabuki H, Nagata K, Sato H, Hasegawa T, Sawabe H, Arao M, Suda T, Isoda A, Mukai M, Ishikawa D, Izumi T, Macromolecules, 42(24), 9506 (2009)
  11. Gergen WP, Machado JM, Waters DG, Gingrich RP, US Patent 5,043,389 (1991).
  12. Jeon IS, Lee SW, Jho JY, Macromol. Res., 27(8), 821 (2019)
  13. Jeon IS, Lee MG, Lee SW, Jho JY, Macromol. Res., 27(8), 827 (2019)
  14. Machado JM, Gingrich RP, US Patent H1601 (1996).
  15. Luzinov I, Xi K, Pagnoulle C, Huynh-Ba G, Jerome R, Polymer, 40(10), 2511 (1999)
  16. Jung HJ, Son Y, Park OO, Macromol. Res., 22(2), 146 (2014)
  17. Wu S, J. Poylm. Sci., Part C: Polym. Lett., 34, 19 (1971)
  18. Wu S, in Poylmer Interface and Adhesion, Marcel Dekker, New York, Chap. 3, 1982.
  19. Van Krevelen DW, in Properties of Polymers, Elsevier Science, Amsterdam, Chap. 8, 1976.
  20. Petke FD, RAY BR, J. Colloid Interface Sci., 31, 216 (1969)
  21. Wilkinson A, Clemens ML, Harding VM, Polymer, 45(15), 5239 (2004)
  22. Mani S, Cassagnau P, Bousmina M, Chaumont P, Macromol. Mater. Eng., 296, 909 (2011)
  23. Han KH, Jang MG, Juhn KJ, Cho CL, Kim WN, Macromol. Res., 26(3), 254 (2018)
  24. Nemirovski N, Siegmann A, Narkis M, J. Macromol. Sci. Part B: Phys., 34, 459 (1995)
  25. Zhou Y, Wang W, Dou R, Li LP, Wang MB, Poym. Eng. Sci., 53, 1845 (2013)
  26. Hobbs SY, Dekkers MEJ, Watkins VH, Polymer, 29, 1598 (1988)
  27. Chiu HT, Hsiao YK, J. Polym. Res., 13, 153 (2006)
  28. Kim DK, Lee AS, Baek BK, Song KH, Hong SM, Koo CM, Macromol. Res., 28(2), 103 (2020)
  29. Sue HJ, Huang J, Yee AF, Polymer, 33, 4868 (1992)
  30. Lee H, Chin IJ, Macromol. Res., 24(6), 515 (2016)
  31. Oxborough RJ, Bowden PB, Philos. Mag., 30, 171 (1974)