Journal of Industrial and Engineering Chemistry, Vol.91, 273-284, November, 2020
Experimental perspective for reactive separation of malonic acid using TBP in natural non-toxic solvents
E-mail:
Recent technological advancement allows the synthesis of malonic acid from the bio-fermentation route by using cost-effective raw material like biomass, which enhances its overall production. The dilute aqueous stream of malonic acid produced from the biological route needs to be recovered. Process intensification with precise operating conditions and low toxicity such as reactive separation is applied for extraction of malonic acid from the dilute aqueous stream by using non-toxic natural solvents like canola oil, sunflower oil, and soybean oil with the tributyl phosphate (TBP) extractant. An in-depth experimental analysis is performed in the present study to evaluate extraction complexation equilibrium constant (KE(MA)), extraction efficiency (E(MA)%), distribution coefficient (KD(MA)), and loading ratio (Z(MA)). The overall loading ratio is less than 0.5 for all solvents, which signifies the formation of 1:1 complexation. KD(MA) and E(MA)% with soybean oil are in range of 0.265-0.832, and 20.683-43.850, for sunflower oil is 0.208-0.763 and 17.227-42.340, for canola oil is 0.301-0.875 and 22.878-45.106. The behavior of TBP-malonic acid complexation equilibrium in the reactive separation process is predicted by comparing relative basicity model values with experimental outputs. The separation process requires a continuous column operation, and the number of transfer stages is evaluated to be 2. Furthermore, the diffusion coefficients (D(MA)) of malonic acid to the natural, non-toxic solvents with variable TBP concentrations are evaluated by employing various empirical correlations. The present study paves the way for future research in continuous in-situ product recovery of malonic acid produced via biological route.
- Thongtem T, Thongtem S, Ceram. Int., 31, 241 (2005)
- Peters E, Schlakman G, Yang E, US Patent(2018).
- Matsumoto M, Nagai K, Kondo K, Solvent Extract. Res. Dev., 22(2), 209 (2015)
- Dhongde V, Wasewar KL, De BS, Chemosphere, 188, 354 (2017)
- De BS, Wasewar KL, Dhongde VR, Sontakke PB, Chem. Biochem. Eng. Q., 32(1), 19 (2018)
- De BS, Wasewar KL, Dhongde VR, Madan SS, Gomase AV, Chem. Biochem. Eng. Q., 32(1), 29 (2018)
- Rodriguez M, Gonzalez-Munoz MJ, Luque S, Alvarez JR, Coca J, J. Membr. Sci., 274(1-2), 209 (2006)
- Okai N, Miyoshi T, Takeshima Y, Kuwahara H, Ogino C, Kondo A, Appl. Microbiol. Biotechnol., 100(1), 135 (2016)
- Buchan A, Collier LS, Neidle EL, Moran MA, Appl. Environ. Microbiol., 66(11), 4662 (2000)
- Wu Z, Xie L, Li Y, Wang Y, Wang X, Wan N, Huang X, Zhang X, Yang M, Ind. Crop. Prod., 139, 111516 (2019)
- Wang ZX, Luo YB, Yu P, J. Membr. Sci., 280(1-2), 134 (2006)
- Zhang J, Chen N, Tnag Z, Yu Y, Hu Q, Feng C, Phys. Chem. Chem. Phys., 17(18), 12041 (2015)
- Benitez FJ, Beltran-Heredia J, Acero JL, Gonzalez T, Water Res., 30(7), 1597 (1996)
- Keshav A, Norge P, Wasewar KL, Appl. Biochem. Biotechnol., 167(2), 197 (2012)
- De BS, Wasewar KL, Dhongde V, Mishra T, React. Chem. Eng. (2019).
- Waghmare MD, Wasewar KL, Sonawane SS, Shende DZ, Sep. Purif. Technol., 120, 296 (2013)
- Datta D, Babu BV, Kumar S, J. Chem. Eng. Data, 62(10), 3431 (2017)
- Sharma H, Singh K, Wasewar KL, Athankar KK, J. Chem. Eng. Data, 62(12), 4047 (2017)
- Rewatkar K, Shende DZ, Wasewar KL, J. Chem. Eng. Data, 61(9), 3217 (2016)
- Wasewar KL, Shende D, Keshav A, Ind. Eng. Chem. Res., 50(2), 1003 (2011)
- Kaur G, Elst K, RSC Adv., 4, 45029 (2014)
- Waghmare MD, Wasewar KL, Sonawane SS, Shende DZ, Ind. Eng. Chem. Res., 50(23), 13526 (2011)
- Datta D, Kumar S, J. Chem. Eng. Data, 59(5), 1540 (2014)
- Keshav A, Wasewar KL, Chand S, Ind. Eng. Chem. Res., 48(2), 888 (2009)
- Kar A, Bagde A, Athankar KK, Wasewar KL, Shende DZ, J. Chem. Technol. Biotechnol., 92(11), 2825 (2017)
- Athankar KK, Wasewar KL, Varma MN, Shende DZ, Sep. Sci. Technol., 1 (2017).
- Datta D, Kumar S, Wasewar KL, J. Chem. Eng. Data, 56(8), 3367 (2011)
- Antony FM, Wasewar KL, De BS, Kumar S, J. Chem. Eng. Data, 64(3), 1101 (2019)
- De BS, Wasewar KL, Dhongde VR, Ingle AA, Mondal H, Chem. Eng. Res. Des., 132, 593 (2018)
- De BS, Wasewar KL, Dhongde V, Chem. Data Collect., 15-16, 244 (2018)
- Datta D, Marti ME, Uslu H, Kumar S, J. Taiwan Inst. Chem. Eng., 66, 407 (2016)
- Wasewar KL, Heesink ABM, Versteeg GF, Pangarkar VG, J. Biotechnol., 97, 59 (2002)
- Thakre N, Prajapati AK, Mahapatra SP, Kumar A, Khapre A, Pal D, J. Chem. Eng. Data, 61(7), 2614 (2016)
- Keshav A, Wasewar KL, Chand S, Chem. Eng. Commun., 197, 606 (2009)
- Wasewar KL, Shende DZ, J. Chem. Eng. Data, 55(9), 4121 (2010)
- Dhongde VR, De BS, Wasewar KL, J. Chem. Eng. Data, 64(3), 1072 (2019)
- Uslu H, Kirbaslar SI, Wasewar KL, J. Chem. Eng. Data, 54(3), 712 (2009)
- Yang Z, Tan Z, Li F, Li X, Ind. Crop. Prod., 89, 78 (2016)
- Vermue M, Sikkema J, Verheul A, Bakker R, Tramper J, Biotechnol. Bioeng., 42(6), 747 (1993)
- Laane C, Boeren S, Vos K, Veeger C, Biotechnol. Bioeng., 30(1), 81 (1987)
- Solichien MS, Obrien D, Hammond EG, Glatz CE, Enzyme Microb. Technol., 17(1), 23 (1995)
- Dietrich J, Fortman J, 114 EJ Steen - US Patent 9, 816, U. 2017 (2017).
- Antony FM, Wasewar K, J. Chem. Eng. Data, 63(3), 587 (2018)
- Keshav A, Norge P, Wasewar KL, Appl. Biochem. Biotechnol., 167(2), 197 (2012)
- Kertes AS, King CJ, Biotechnol. Bioeng., 28, 269 (1986)
- Tamada JA, King CJ, Ind. Eng. Chem. Res., 29, 1327 (1990)
- San-Martin M, Pazos C, Coca J, J. Chem. Technol. Biotechnol., 54(1), 1 (2007)
- Wasewar KL, Pangarkar VG, Heesink ABM, Versteeg GF, Chem. Eng. Sci., 58(15), 3385 (2003)
- Li YZ, Song XF, Chen GL, Sun Z, Xu YX, Yu JG, Chem. Eng. J., 278, 55 (2015)
- Matsumoto M, Otono T, Kondo K, Sep. Purif. Technol., 24(1-2), 337 (2001)
- Niitsu M, Sekine T, Bull. Chem. Soc. Jpn., 51(3), 705 (1978)
- Hong YK, Hong WH, Han DH, Biotechnol. Bioprocess Eng., 6, 386 (2001)
- Dorni C, Sharma P, Saikia G, Longvah T, Food Chem., 238, 9 (2018)
- Athankar KK, Varma MN, Shende DZ, Yoo CK, Wasewar KL, J. Chem. Eng. Data, 58(11), 3240 (2013)
- Shan X, Study on Extraction Equilibria Behavior of Carboxylic Acids with Relative Basicity, (2003).
- Laane C, Boeren S, Vos K, Trends in Biotechnology, vol. 3, Elsevier Science Publishers, 1983.
- Laane C, Boeren S, Vos K, Veeger C, Biotechnol. Bioeng., 30(1), 81 (1987)
- Athankar KK, Wasewar KL, Varma MN, Shende DZ, J. Ind. Eng. Chem., 22, 240 (2015)
- Krzyzaniak A, Schuur B, de Haan AB, Chem. Eng. Sci., 109, 236 (2014)
- Eggert A, Massmann T, Kreyenschulte D, Becker M, Heyman B, Buchs J, Jupke A, Sep. Purif. Technol., 215, 463 (2019)
- Bart HJ, Bauer A, Marr R, Chem. Eng. Technol., 10(1), 291 (1987)
- Schlichting E, Halwachs W, Schugerl K, Chem. Eng. Commun., 51(1-6), 193 (1987)
- Wilke CR, Chang P, AIChE J., 1(2), 264 (1955)
- Umesl NO, Danner RP, Ind. Eng. Chem. Process Des. Dev., 20(4), 662 (1981)
- Reddy KA, Doraiswamy LK, Ind. Eng. Chem. Fundam., 6(1), 77 (1967)
- Mantell C, Rodriguez M, de la Ossa EM, J. Supercrit. Fluids, 29(1-2), 165 (2004)
- Tyn MT, Calus WF, J. Chem. Eng. Data, 20(1), 106 (1975)
- Kojima T, Fukutomi H, Bull. Chem. Soc. Jpn., 60, 1309 (1987)
- Li J, Carr PW, Anal. Chem., 69(13), 2530 (1997)
- Postaru M, Bompa AS, Galaction AI, Blaga AC, Cascaval D, Chem. Biochem. Eng. Q., 30(1), 81 (2016)