화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.92, 191-199, December, 2020
Design of isosorbide crystallization process as recovery system for poly (ethylene-co-isosorbide) terephthalate production via solubility measurements and crystallization kinetic parameter estimation
E-mail:,
The solubility of isosorbide in ethylene glycol was measured and the crystallization kinetic parameters were estimated via seeded batch cooling crystallization. The saturation concentration of isosorbide was measured using a density meter, which enabled rapid and accurate measurement of the concentration. The crystallization kinetic parameters were estimated by fitting the population balance equation to the time-dependent change of concentration and average crystal size. Crystallization using continuous stirred tank reactors (CSTR) was simulated with the obtained parameters, and the reliability of the simulation was verified with experiments. The kinetic parameters estimated from seeded batch crystallization experiments can be used for the prediction of crystallization under seeded conditions, such as CSTR. The prediction of the crystal size and concentration of the CSTR crystallizer using the estimated parameters were consistent with the experimental results. The amount and composition of residue obtained from industrial poly(ethylene-co-isosorbide) terephthalate process was predicted, and recovery processes and optimum operating conditions are proposed via simulation using Aspen Plus.
  1. Zheng Y, Yanful EK, Bassi AS, Crit. Rev. Biotechnol., 25(4), 243 (2005)
  2. Schneiderman DK, Hillmyer MA, Macromolecules, 50(10), 3733 (2017)
  3. PlasticsEurope, Plastics.The Facts 2016 An Analysis of European Latest Plastics Production, Demand and Waste Data PlasticsEurope, (2016).
  4. Neufeld L, et al., The new plastics economy: rethinking the future of plastics, World Economic Forum, 2016.
  5. Conservancy O, Stemming the tide: Ocean Conservancy and McKinsey Center for Business and Environ-ment, 2015.
  6. Andrady AL, Mar. Pollut. Bull., 62(8), 1596 (2011)
  7. Bastioli C, Starch-Starke, 53(8), 351 (2001)
  8. Iles A, Martin AN, J. Clean Prod., 45, 38 (2013)
  9. Barnett R, Biodegradable plastics made from plants, not oil, is emerging, USA Today, 2008 December.
  10. Chua H, Peter H, Ma CK, Appl. Biochem. Biotechnol., 78(1-3), 389 (1999)
  11. Mecking S, Angew. Chem.-Int. Edit., 43(9), 1078 (2004)
  12. Lorcks J, Polym. Degrad. Stabil., 59(1), 245 (1998)
  13. Lichtenthaler FW, Peters S, Comptes. Rendus. Chimie., 7(2), 65 (2004)
  14. Rinaldi R, Schuth F, Energy Environ. Sci., 2(6), 610 (2009)
  15. Zenner MD, Biorenewable materials from isosorbide. Ph.D. Dissertation, Iowa State University, Ames, IA, 2015.
  16. Lavilla C, Alla A, de Ilarduya AM, Munoz-Guerra S, Biomacromolecules, 14(3), 781 (2013)
  17. Bersot JC, Jacquel N, Saint-Loup R, Fuertes P, Rousseau A, Pascault JP, Spitz R, Fenouillot F, Monteil V, Macromol. Chem. Phys., 212(19), 2114 (2011)
  18. Feng X, East AJ, Hammond WB, Zhang Y, Jaffe M, Polym. Adv. Technol., 22(1), 139 (2011)
  19. Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault JP, Prog. Polym. Sci, 35(5), 578 (2010)
  20. Kricheldorf HR, J. Macromol. Sci.-Polym. Rev, 37(4), 599 (1997)
  21. Quintana R, de Ilarduya AM, Alla A, Munoz-Guerra S, J. Polym. Sci. A: Polym. Chem., 49(10), 2252 (2011)
  22. Rose M, Palkovits R, ChemSusChem, 5(1), 167 (2012)
  23. Thiyagarajan S, Wu J, Knoop RJI, van Haveren J, Lutz M, van Es DS, RSC Adv., 4(89), 47937 (2014)
  24. Wu J, Eindhoven University of Technology, Eindhoven, 2012.
  25. Wu J, Eduard P, Thiyagarajan S, Jasinska-Walc L, Rozanski A, Guerra CIF, Noordover BA, Van Haveren J, van Es DS, Koning CE, Macromolecules, 45(12), 5069 (2012)
  26. Yoon WJ, Hwang SY, Koo JM, Lee YJ, Lee SU, Im SS, Macromolecules, 46(18), 7219 (2013)
  27. Li HY, Kawajiri Y, Grover MA, Rousseau RW, Ind. Eng. Chem. Res., 56(14), 4060 (2017)
  28. Qiu YF, Rasmuson AC, AIChE J., 40(5), 799 (1994)
  29. Aamir E, Nagy ZK, Rielly CD, Kleinert T, Judat B, Ind. Eng. Chem. Res., 48(18), 8575 (2009)
  30. O’Ciardha CT, Hutton KW, Mitchell NA, Frawley PJ, Cryst. Growth Des., 12(11), 5247 (2012)
  31. Kee NC, Arendt PC, Goh LM, Tan RB, Braatz RD, CrystEngComm, 13(4), 1197 (2011)
  32. Deng L, Wang Y, Zhou J, Huang T, Sun X, J. Ind. Eng. Chem., 83, 35 (2020)
  33. Hu Q, Rohani S, Wang DX, Jutan A, AIChE J., 50(8), 1786 (2004)
  34. Togkalidou T, Tung HH, Sun Y, Andrews AT, Braatz RD, Ind. Eng. Chem. Res., 43(19), 6168 (2004)
  35. Nagy ZK, Fujiwara M, Woo XY, Braatz RD, Ind. Eng. Chem. Res., 47(4), 1245 (2008)
  36. Kim WS, Kim DW, Koo KK, J. Ind. Eng. Chem., 77, 441 (2019)
  37. Mullin JW, Crystallization, Elsevier, Amsterdam, Netherlands, 2001.
  38. Zhang H, Lakerveld R, Heider PL, Tao M, Su M, Testa CJ, D’Antonio AN, Barton PI, Braatz RD, Trout BL, Cryst. Growth Des., 14, 2148 (2014)
  39. Power G, Hou GY, Kamaraju VK, Morris G, Zhao Y, Glennon B, Chem. Eng. Sci., 133, 125 (2015)
  40. Yang Y, Nagy ZK, Ind. Eng. Chem. Res., 54(21), 5673 (2015)
  41. Kutluay S, Sahin O, Ceyhan AA, Izgi MS, J. Cryst. Growth, 467, 172 (2017)
  42. Park K, Kim DY, Yang DR, Ind. Eng. Chem. Res., 55(26), 7142 (2016)
  43. Koyama M, Kudo S, Amari S, Takiyama H, J. Ind. Eng. Chem., 89, 111 (2020)
  44. Lomeli-Rodriguez M, Corpas-Martinez JR, Willis S, Mulholland R, Lopez-Sanchez JA, Polymers, 10(6), 600 (2018)
  45. Kim HJ, Kang MS, Knowles JC, Gong MS, J. Biomater. Appl., 29(3), 454 (2014)
  46. Liron Z, Cohen S, J. Pharm. Sci., 72, 499 (1983)
  47. Baek JK, Kim S, Lee GS, Shim JJ, Korean J. Chem. Eng., 21(1), 230 (2004)
  48. Pantaraks P, Flood AE, Cryst. Growth Des., 5(1), 365 (2005)
  49. Ouiazzane S, Messnaoui B, Abderafi S, Wouters J, Bounahmidi T, J. Cryst. Growth, 310(4), 798 (2008)
  50. Yang Y, Song LC, Zhang YQ, Nagy ZK, Ind. Eng. Chem. Res., 55(17), 4987 (2016)
  51. Dormand JR, Prince PJ, J. Comput. Appl. Math., 6(1), 19 (1980)
  52. Garside J, Mersmann A, Nyvlt J, Measurement of crystal growth and nucleation rates, Institution of Chemical Engineers: Rugby, UK, 2002.
  53. Pratten N, J. Mater. Sci., 16, 1737 (1981)
  54. Powell MJ, A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis, Springer, pp.144 1978.
  55. Kim JY, Kim HY, Yeo YK, Korean J. Chem. Eng., 18(4), 432 (2001)
  56. United States Environmental Protection Agency, Environmental Impact Statement, (1987).
  57. Towler G, Sinnott R, Utilities and Energy Efficient Design, Chemical Engineering Design, 2nd ed., Butterworth-Heinemann, Boston, MA, p.103 2013.