- Previous Article
- Next Article
- Table of Contents
Korean Chemical Engineering Research, Vol.59, No.1, 1-5, February, 2021
고분자전해질 연료전지 열화 분석방법에 의한 PEM 수전해 열화 평가
Degradation Evaluation of PEM Water Electrolysis by Method of Degradation Analysis Used in PEMFC
E-mail:
초록
PEM(Proton Exchange Membrane) 수전해는 PEM 연료전지와 동일한 PEM 전해질 막을 사용하며, 동일한 반응이지만 방향이 반대인 반응에 의해 진행된다. PEM 연료전지는 전해질 막과 촉매의 열화와 내구성에 대해 많은 연구가 진행되어 개발된 열화분석 방법이 많다. 본 연구에서 PEM 수전해 내구성 평가에 PEM 연료전지 내구성 평가 방법 적용이 가능한지 검토하였다. PEM 수전해 열화과정에서 PEM 연료전지와 동일한 조건으로 LSV(Linear sweep voltammetry), CV(Cyclic voltammetry), Impedance, SEM(Scanning Electron Microscope), FT-IR(Fourier Transform Infrared spectroscopy) 등을 분석해 비교하였다. PEM 연료전지처럼 막을 통과한 수소가 Pt/C 전극에서 산화되어 수소투과전류밀도를 측정함으로써 PEM 수전해 고분자 막의 열화정도를 분석할 수 있었다. 수소/질소 유입 조건에서 CV에 의한 전극활성면적(ECSA)을 측정해 전극열화를 분석할 수 있었다. 수소와 공기를 Pt/C 전극과 IrO2 전극에 공급하면서 각 전극의 임피던스를 측정해 전극과 고분자 막의 내구성을 평가할 수 있었다.
The PEM(Proton Exchange Membrane)water electrolysis uses the same PEM electrolyte membrane as the PEM fuel cell and proceeds by the same reaction but the opposite direction. The PEM fuel cell has many methods of degradation analysis since many studies have been conducted on the degradation and durability of the membrane and catalyst. We examined whether PEM fuel cell durability evaluation method can be applied to PEM electrolytic durability evaluation. During the PEM electrolytic degradation process, LSV(Linear sweep voltammetry), CV(Cyclic voltammetry), Impedance, SEM(Scanning Electron Microscope) and FT-IR(Fourier Transform Infrared spectroscopy) were analyzed and compared under the same conditions as the PEM fuel cell. As the PEM fuel cell, hydrogen passing through the membrane was oxidized at the Pt/C electrode, and the hydrogen permeation current density was measured to analyze the degree of degradation of the PEM membrane. Electrode degradation could be analyzed by measuring the electrode active area (ECSA) by CV under hydrogen/nitrogen flowing conditions. While supplying hydrogen and air to the Pt/C electrode and the IrO2 electrode, the impedance of each electrode was measured to evaluate the durability of the electrode and membrane.
- Alexander B, Hartmut S, Renew. Sust. Energ. Rev., 82, 2440 (2018)
- Ju H, Badwal S, Giddey S, Appl. Energy, 231, 502 (2018)
- Kumar SS, Himabindu V, Mater. Sci. for Energy Technol., 2(3), 442-454(2019).
- Grigoriev SA, Millet P, Fateev VN, J. Power Sources, 177(2), 281 (2008)
- Millet P, Ngameni R, Grigoriev SA, Mbemba N, Brisset F, Ranjbari A, Etievant C, Int. J. Hydrog. Energy, 35(10), 5043 (2010)
- Carmo M, Fritz DL, Merge J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901 (2013)
- Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597 (2006)
- Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
- Oh HS, Nong HN, Reier T, Bergmann A, Gliech M, de Araujo JF, Willinger E, Schlogl R, Teschner D, Strasser P, J. Am. Chem. Soc., 138(38), 12552 (2016)
- Siracusano S, Baglio V, Van Dijk N, Merlo L, Arico AS, Appl. Energy, 192, 477 (2017)
- Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
- Rakousky C, Reimer U, Wippermann K, Carmo M, Lueke W, Stolten D, J. Power Sources, 326, 120 (2016)
- Chandesris M, Medeau V, Guillet N, Chelghoum S, Thoby D, Fouda-Onana F, Int. J. Hydrog. Energy, 40(3), 1353 (2015)