화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.1, 11-15, February, 2021
PEMFC Cathode 산소 조건에서 전극 촉매 내구성 평가
Durability Evaluation of PEMFC Electrode Using Oxygen as Cathode Gas
E-mail:
초록
본 연구에서는 전극촉매 내구성 평가를 potentiostat를 사용하지 않고 간단히 로더(Electronic loader)를 사용해 전극을 가속 열화시키는 방법을 개발하고자 하였다. 이를 위해, cathode에 질소를 유입하지 않고 산소를 유입해 자체 발생 전압을 활용해서 계단식 전압변화를 반복해 전극의 내구성을 평가하였다. 정확한 전극 내구평가를 위해 즉 고분자 막이 열화되지 않게 하기 위해 계단식 전압변화에서 고전압은 0.9 V로 낮게하고, 상대습도를 100%하여 라디칼에 의한 고분자 막 열화를 억제하고자 하였다. 전압변화 30,000 cycle (50시간) 만에 전극활성면적이 41.4% 감소했다. 전극은 열화되지만 고분자 막이 열화되지 않음을 수소투과도 증가가 없고 막 두께감소 없으면서 HFR (High Frequency Resistance) 증가 없는 것으로 확인했다.
In this study, we tried to develop a method of accelerated degradation of the electrode by simply using a electronic loader without using a potentiostat to evaluate the durability of the electrode catalyst. To this end, the durability of the electrode was evaluated by repeating the stepwise voltage change using the self-generated voltage by introducing oxygen without introducing nitrogen into the cathode. For accurate electrode durability evaluation, that is, in order not to deteriorate the polymer membrane, the high voltage was lowered to 0.9 V in stepwise voltage change and the relative humidity was 100% to suppress degradation of the polymer membrane due to radicals. After 30,000 cycles (50 hours) of voltage change, the electrode active area decreased by 41.4%. It was confirmed that the electrode was deteriorated, but the polymer membrane was not deteriorated, that there was no increase in hydrogen permeability, no decrease in membrane thickness, and no increase in HFR(High Frequency Resistance).
  1. Wang GJ, Yu Y, Liu H, Gong CL, Wen S, Wang XH, Tu ZK, Fuel Process. Technol., 179, 203 (2018)
  2. Department of Energy, https://wwwenergygov/, (2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedogojp/english/indexhtml, (2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org, (2016).
  5. Ministry of Science and Technology of the People's Republic of China, http://wwwmostgovcn/eng, (2016).
  6. Wilkinson DP, St-Pierre J, Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  7. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140(12), 2872 (1993)
  8. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
  9. Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
  10. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
  11. Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
  12. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
  13. Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P, J. Electrochem. Soc., 141(10), 2659 (1994)
  14. Akita T, Taniguchi A, Maekawa J, Sirorna Z, Tanaka K, Kohyama M, Yasuda K, J. Power Sources, 159(1), 461 (2006)
  15. Zhai Y, Zhang H, Xing D, Shao Z, J. Power Sources, 164, 126 (2006)
  16. U.S. Department of Energy and U.S. DRIVE Fuel Cell Technical Team, Multi-Year Research, Development and Demonstration Plan, 2016 Fuel Cell Section.
  17. Daido University, NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014).
  18. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
  19. Song J, Jeong J, Jeong J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(3), 325 (2013)
  20. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68 (2013)