Korean Chemical Engineering Research, Vol.59, No.1, 118-126, February, 2021
라이신 첨가에 의한 폐 굴껍질 이용 vaterite형 탄산칼슘 제조
Production of Vaterite Type Calcium Carbonate by using Oyster Shell Waste with Lysine
E-mail:
초록
폐기물로 대량 발생되는 굴껍질을 활용한 vaterite 형 탄산칼슘 제조 실험을 하였다. 굴껍질을 800 °C 의 온도에서 항량이 되도록 가열하여 산화칼슘이 주성분인 소성 굴껍질을 제조하였다. 이 굴껍질을 질산 용액에 녹여 0.1M 질산칼슘 수용액을 만들고, 0.1 몰 라이신/1 몰 생석회가 첨가된 0.1 M 탄산나트륨 수용액과 20 °C, 600 rpm 교반 조건에서 1시간동안 반응시켜 탄산칼슘을 제조하였다. XRD, SEM, Size 분석을 하고 vaterite 84.5%, calcite 15.5% 함유한 구형 탄산칼슘을 확인하였다. 평균 입경 범위는 6.87 μm 이었고, 아미노산 분석에서 탄산칼슘 내의 라이신 함유량은 0.1%이었다.
The experiments to produce the vaterite type calcium carbonate were conducted for using the waste oyster shell as the recycling resources. Firstly, the oyster shell were calcinated at 800 °Cfor 24 h. Calcinated oyster shell were reacted with the nitric acid solution, and were diluted to 0.1 M Ca(NO3)2 solution. This solution was mixed with 0.1 M Na2CO3 contained 0.1 mol lysine/1 mol CaO at 20 °C and 600 rpm mixing condition for 1 h. The reaction products were identified to vaterite type calcium carbonate (84.5% vaterite, 15.5% calcite) by XRD and SEM analysis. Mean particle diameter was 6.87 μm, and the lysine content in calcium carbonate was analyzed to 0.1%.
- https://www.kmi.re.kr/web/contents View.do?rbsidx=224, Korea Maritime Institute, Marine ocean statics(2018).
- Park SC, Cho HS, Chung JD, Journal of Korea Society of Waste Management, 33(5), 513 (2016).
- Song SM, Seong BI, Koo JH, Kim IH, Korean Chem. Eng. Res., 49(1), 109 (2011)
- Thenepalli T, Ahn YJ, Han C, Ramakrishna C, Ahn JW, Korean J. Chem. Eng., 32(6), 1009 (2015)
- Maruo Calcium, “Monodispersed Vaterite type Calcium Carbonate, and Shape Control Method,” Korea Patent No 10-0176250(1998).
- KAIST, “Method for preparing Hydroxyapatite from Vaterite containing Catechol Amine,” Korea Patent No 10-1318348(2013).
- Lyu SG, Ryu SO, Park YH, Sur GS, Korean Chem. Eng. Res., 36(2), 262 (1998)
- Kang YC, Park SB, Korean Chem. Eng. Res., 35(6), 846 (1997)
- Lee SG, Jung WM, Kim WS, Choi CK, Korean Chem. Eng. Res., 36(1), 49 (1998)
- Saksono N, Gozan M, Bismo S, Krisanti E, Widaningrum R, Song SK, Korean J. Chem. Eng., 25(5), 1145 (2008)
- Han HK, Kim BM, Kim JA, Korean Chem. Eng. Res., 46(6), 1052 (2008)
- Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 46(6), 1007 (2008)
- Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 47(2), 213 (2009)
- Kim JH, Song SM, Kim JM, Kim WS, Kim IH, Korean J. Chem. Eng., 27(5), 1532 (2010)
- Son C, Song W, Hwang DS, Hong YK, Joo J, Choi YS, Korean J. Chem. Eng., 33(8), 2406 (2016)
- Song SM, Seong BI, Koo JH, Kim IH, Korean Chem. Eng. Res., 49(1), 109 (2011)
- Kralj D, Brecevic L, J. Cryst. Growth, 104, 793 (1990)
- Albeck S, Weiner S, Addadi L, Chem. Eur. J., 2(3), 278 (1996)
- Zhang S, Gonsalves KE, Langmuir, 14(12), 6761 (1998)
- Ogino T, Suzuki T, Sawada K, J. Cryst. Growth, 100, 159 (1990)
- Rao MS, Bull. Chem. Soc. Jpn., 46, 1414 (1973)
- Kontoyannis C, Vagenas NV, Analyst, 125, 251 (2000)
- Lyu SG, Sur GS, Kang SH, Korean Chem. Eng. Res., 35(2), 186 (1997)
- Han HK, Jeong OH, Lim MH, Kim JA, Korean Chem. Eng. Res., 44(3), 289 (2006)