화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.2, 422-441, February, 2021
Modeling of autocatalytic degradation of polymer microparticles with various morphologies based on analytical solutions of reaction-diffusion equations
E-mail:
Analytical solutions of transient concentration of degraded components inside cylindrical and slab-type PLGA particles immersed in infinite medium were derived by solving reaction-diffusion equations of autocatalytic reaction using eigenfunction expansion method. The resulting average concentrations were compared with the modeling results of spherical PLGA particles by Versypt and her colleagues to study the effect of particle morphology on the autocatalytic reaction. Mass transfer resistance inside and outside of the particles was also considered using Biot number, and its effects on the concentration inside particles with various morphologies were also studied by solving reaction-diffusion equation. To predict transient concentration in surrounding medium, coupled differential equations were solved for the three shapes of PLGA particles by assuming finite volume of the decomposition system. Mathematical solutions were obtained by Laplace transform, and the results were compared for the PLGA particles with different shapes depending on Thiele modulus and particle volume fraction.
  1. Iqbal N, Khan AS, Asif A, Yar M, Haycock JW, Rehman IU, Int. Mater. Rev., 64(2), 91 (2018)
  2. Rebagay G, Bangalore S, Curr. Cardiovasc. Risk Rep., 13(22), 2 (2019)
  3. Kallinteri P, Higgins S, Hutcheon GA, St Pourcain CB, Garnett MC, Biomacromolecules, 6(4), 1885 (2005)
  4. Anderson JM, Shive MS, Adv. Drug Deliv. Rev., 28, 5 (1997)
  5. Astete CE, Sabliov CM, J. Biomater. Sci. Polym. Ed., 17(3), 247 (2006)
  6. Lopes MS, Jardini AL, Filho RM, Chem. Eng. Trans., 38, 331 (2014)
  7. Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M, Acta Biomater., 73, 38 (2018)
  8. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V, J. Control. Release, 161(2), 505 (2012)
  9. Yu CC, Chen YW, Yeh PY, Hsiao YS, Lin WT, Kuo CW, Chueh DY, You YW, Shyue JJ, Chang YC, Chen P, J. Nanobiotechnol., 17(1), 31 (2019)
  10. Liu X, Baldursdottir SG, Aho J, Qu H, Christensen LP, Rantanen J, Yang M, Pharm. Res., 34, 738 (2017)
  11. van Nostrum CF, Veldhuis TFJ, Bos GW, Hennink WE, Polymer, 45(20), 6779 (2004)
  12. Blasi P, J. Pharm. Investig., 49, 337 (2019)
  13. Versypt ANF, Arendt PD, Pack DW, Braatz RD, Plos One, 10(8), e01355 (2015)
  14. Vey E, Rodger C, Booth J, Claybourn M, Miller AF, Saiani A, Polym. Degrad. Stabil., 96, 1882e1 (2011)
  15. Kim DH, Lee J, Korean J. Chem. Eng., 29(1), 42 (2012)
  16. Bessonov N, Bocharov G, Meyerhans A, Popov V, Volpert V, Mathematics, 8, 117 (2020)
  17. Cho YS, Korean Chem. Eng. Res., 57(5), 652 (2019)
  18. Cho W, Lee J, Korean J. Chem. Eng., 30(3), 580 (2013)
  19. Mohammad AK, Reineke JJ, Mol. Pharm., 10(6), 2183 (2013)
  20. Chereddy KK, Payen VL, Preat V, J. Control. Release, 289, 10 (2018)
  21. Rice RG, Do DD, Applied mathematics and modeling for chemical engineers, 1st Ed., John Wiley & Sons, New York (1995).
  22. Amoyav B, Benny O, Polymers, 11, 419 (2019)
  23. Ahi ZB, Renkler NZ, Seker MG, Tuzlakoglu K, Int. J. Biomater., 2019, 193247 (2019)
  24. Giustina GD, Gandin A, Brigo L, Panciera T, Giulitti S, Sgarbossa P, D'Alessandro D, Trombi L, Danti S, Brusatin G, Mater. Des., 165, 107566 (2019)
  25. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 27(3), 504 (2007)
  26. Ryu T, Kim SE, Kim JH, Moon SK, Choi SW, J. Bioact. Compat. Polym., 29(5), 445 (2014)
  27. Xue JJ, Ma SS, Zhou YM, Zhang ZW, He M, ACS Appl. Mater. Interfaces, 7, 9630 (2015)