화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.1, 15-23, January, 2021
Effects of Nucleating Agent on the Thermal Conductivity and Creep Strain Behavior of Rigid Polyurethane Foams Blown by an Environment-Friendly Foaming Agent
E-mail:
The effects of liquid-type additive, methoxynonafluorobutane, on the morphology, thermal conductivity, creep strain, and mechanical strength of polyurethane (PU) foams with an environment-friendly foaming agent, hyrdofluoroolefin, were investigated. The methoxynonafluorobutane under the trade name of NOVEC likely acted as a nucleating agent during the formation of PU foams. When NOVEC was added in the amount of 3 parts per hundred polyol by weight (php), the cell size of the foam was minimal, and the cell size distribution was relatively uniform. At the NOVEC content of 3.0 php, the thermal conductivity of the PU foams was also minimal. This decrease in thermal conductivity was due to the smaller cell size of the foams lowering their thermal conductivity. At 3.0 php NOVEC content, the creep strain of the PU foams was minimal being 0.29% at 1,000 h. At 3.0 php NOVEC, the estimated creep strain of the PU foam exhibited the lowest creep strain of 3.47% at 50 years. As a result, at 3.0 php NOVEC content, the cell wall was relatively less fractured, resulting in a small deformation of the PU foam. These results suggest that the main factors in improving the thermal insulation properties and stability of the PU foams are smaller cell size and narrow cell size distribution.
  1. Chung YC, Kim HY, Yu JH, Chun BC, Macromol. Res., 23(4), 350 (2015)
  2. Lee Y, Jang MG, Choi KH, Han C, Kim WN, J. Appl. Polym. Sci., 133, 43557 (2016)
  3. Kim SH, Park HC, Jeong HM, Kim BK, J. Mater. Sci., 45(10), 2675 (2010)
  4. Kim JM, Kim DH, Kim J, Lee JW, Kim WN, Macromol. Res., 25(2), 190 (2017)
  5. Im H, Roh SC, Kim CK, Macromol. Res., 21(6), 614 (2013)
  6. Kim HS, Park JH, Minn KS, Youn JR, Song YS, Macromol. Res., 28(2), 165 (2020)
  7. Kale MB, Luo Z, Zhang X, Dhamodharan D, Divakaran N, Mubarak S, Wu LX, Xu Y, Polymer, 170, 43 (2019)
  8. Al Nabulsi A, Cozzula D, Hagen T, Leitner W, Muller TE, Polym. Chem., 9, 4891 (2018)
  9. Kjeldsen P, Jensen MH, Environ. Sci. Technol., 35, 3055 (2001)
  10. Grossman RS, SAE Inter. J. Mater. Manufact., 9, 794 (2016)
  11. Harikrishnan G, Singh SN, Kiesel E, Macosko CW, Polymer, 51(15), 3349 (2010)
  12. Septevani AA, Evans DAC, Annamalai PK, Martin DJ, Ind. Crop. Prod., 107, 114 (2017)
  13. Stanzione M, Oliviero M, Cocca M, Errico ME, Gentile G, Avella M, Lavorgna M, Buonocore GG, Verdolotti L, Carbohydr. Polym., 231, 115772 (2020)
  14. Kang MJ, Kim YH, Park GP, Han MS, Kim WN, Do Park S, J. Mater. Sci., 45(19), 5412 (2010)
  15. Kang JW, Kim JM, Kim MS, Kim YH, Kim WN, Jang W, Shin DS, Macromol. Res., 17(11), 856 (2009)
  16. Seguin K, Dallas AJ, Weineck G, Proc. SPIE, 6922, 692230 (2008)
  17. Garrido M, Correia JR, Branco FA, Keller T, J. Compos. Mater, 48, 2237 (2014)
  18. Adachi M, Kosaka H, Fukuda T, Ohashi S, Harumi K, J. Mater. Sci. Technol., 19, 470 (2014)
  19. Van Krevelen DW, Te Nijenhuis K, in Properties of Polymers, 4th ed., Elsevier, Amsterdam, pp 229 2009.
  20. Siengchin S, Mech. Compos. Mater., 45, 415 (2009)
  21. Huang JS, Gibson LJ, J. Mater. Sci., 26, 637 (1991)
  22. Zhang XD, Macosko CW, Davis HT, Nikolov AD, Wasan DT, J. Colloid Interface Sci., 215(2), 270 (1999)
  23. Baser SA, Khakhar DV, Polym. Eng. Sci., 34(8), 642 (1994)
  24. Seo WJ, Jung HC, Hyun JC, Kim WN, Lee YB, Choe KH, Kim SB, J. Appl. Polym. Sci., 90(1), 12 (2003)
  25. Sabbahi A, Vergnaud JM, Eur. Polym. J., 29, 1243 (1993)
  26. Schuetz MA, Glicksman LR, J. Cellu. Plast., 20, 114 (1984)
  27. Moles F, Navarro-Esbri J, Peris B, Mota-Babiloni A, Barragan-Cervera A, Kontomaris K, Appl. Thermal Eng., 71, 204 (2014)