Polymer(Korea), Vol.45, No.1, 164-170, January, 2021
표면처리 실리카 나노입자를 포함하는 폴리우레탄 폼의 안락 특성
Comfort Property of the Polyurethane Composite Foams Including Hydrophilic and Hydrophobic Fumed Silica Nanoparticles
E-mail:
초록
자동차 산업에서 폴리우레탄 폼은 주로 쿠션재, 흡음재로 사용된다. 본 연구에서는 연질 폴리우레탄 폼에 표면 특성이 다른 두 종류(hydrophilic, hydrophobic)의 실리카 나노입자를 첨가하여, 안락 특성에 미치는 영향을 조사하였다. 소수성 실리카 입자(Aerosil-R972)는 우레탄 사슬과의 우수한 접착으로 인해 내부 형태학과 안락 특성의 변화가 거의 없었다. 반면, 친수성 실리카 입자(Aerosil-300)는 우레탄 사슬과의 불안정한 접착성으로, 폼의 강성이 저하되는 결과를 보였다. 이로 인해, 공동과 미세구멍의 크기가 증가했고 친수성 실리카 표면이 미세구멍의 생성을 유도하는 역할을 하게 되어 공동 당 평균 미세구멍의 수가 증가하였다. 이러한 형태학적 특성에 따라 친수성 입자의 함량이 증가함에 따라 이력손실과 꺼짐인자는 증가하는 경향을 보였다. 결과적으로, 친수성 입자를 1.5 wt% 첨가할 때, 이력손실 10% 증가와 꺼짐인자 38% 증가의 결과를 나타내었다.
Flexible polyurethane foams are mainly used in the automobile industry for seat cushioning and sound adsorbing materials. The polyurethane composite foams were fabricated by applying hydrophobic and hydrophilic fumed silica nanoparticles in order to examine the comfort properties of the polyurethane composite foams. In the case of hydrophobic silica (Aerosil-R972), there was little change in morphology and comfort property, but hydrophilic silica (Aerosil-300) revealed higher changes in morphology and comfort properties than the hydrophobic case. Low compatibility of the hydrophilic silica nanoparticles with the polyurethane matrix resulted in larger a cavity and pore sizes compared to the hydrophobic silica case. As a result, the hydrophilic silica influenced much more on the morphology and comfort properties of the foams than the hydrophobic silica case. The sag factor and hysteresis loss were changed about 38% and 10%, respectively by applying 1.5 wt% of hydrophilic fumed silica nanoparticles in fabrications of flexible polyurethane composite foams.
- Zhang T, Kong LY, Dai YT, Yue XJ, Rong J, Qiu FX, Pan JM, Chem. Eng. J., 309, 7 (2017)
- Yang Z, Peng HD, Wang WZ, Liu TX, J. Appl. Polym. Sci., 116(5), 2658 (2010)
- Moon J, Kwak SB, Lee JY, Kim D, Ha JU, Oh JS, Waste Manage., 85, 557 (2019)
- Ebe K, Griffin MJ, Ergonomics, 44, 901 (2001)
- Prociak A, Malewska E, Kuranska M, Bak S, Budny P, Ind. Crop. Prod., 115, 69 (2018)
- Dounis DV, Wilkes GL, Polymer, 38(11), 2819 (1997)
- Elliott JA, Windle AH, Hobdell JR, Eeckhaut G, Oldman RJ, Ludwig W, Boller E, Cloetens P, Baruchel J, J. Mater. Sci., 37(8), 1547 (2002)
- Wolfe HW, In Mechanics of Cellular Plastics, Applied Science: London, pp.99 1982.
- Wada H, Toyota Y, Horie A, Sasaki T, Suzuki C, Fukuda H, Polym. J., 40, 842 (2008)
- Choe H, Kim JH, J. Ind. Eng. Chem., 69, 153 (2019)
- Choi HJ, Choe H, Seo WJ, Kim JH, Polym. Korea, 43(4), 532 (2019)
- Li W, Ryan AJ, Meier IK, Macromolecules, 35(16), 6306 (2002)
- Baek SH, Kim JH, Compos. Sci. Technol., 198, 108325 (2020)
- Choe H, Lee JH, Kim JH, Compos. Sci. Technol., 194, 108153 (2020)
- Sung G, Kim JW, Kim JH, J. Ind. Eng. Chem., 44, 99 (2016)
- Choe H, Sung G, Kim JH, Compos. Sci. Technol., 156, 19 (2018)
- Lee YJ, Park CK, Kim SH, Polym. Compos., 39, 2004 (2018)
- Baek SH, Choi HJ, Kim JH, Polym. Korea, 44(1), 91 (2020)
- Moon J, Sinha TK, Kwak SB, Ha JU, Oh JS, Int. J. Automot. Technol., 21, 1089 (2020)
- Sung GW, Choe H, Choi YS, Kim JH, Korean J. Chem. Eng., 35(4), 1045 (2018)
- Choi HJ, Kim JH, J. Ind. Eng. Chem., 90, 260 (2020)
- Lee SH, Seo WJ, Heo CY, Kwak KH, Kim SB, Polym. Korea, 43(3), 401 (2019)
- Ghasemi S, Amini EN, Tajvidi M, Kiziltas A, Mielewski DF, Gardner DJ, J. Appl. Polym. Sci., 138, 10 (2021)
- Lee ST, Ramesh NS, Polymeric Foams: Mechanisms and Materials; Polymeric foams series; CRC Press: Boca Raton, USA, 2004.
- Bolton JS, Kang YJ, SAE Trans., 106, 2576 (1997)
- Smits GF, J. Build. Phys., 17, 309 (1994)
- Rostiashvili VG, Vilgis TA, Encyclopedia of Polymeric Nanomaterials, Springer Berlin Heidelberg: Berlin, Heidelberg, pp.1 2021.
- Hubbell JA, Bio-Technology, 13, 565 (1995)