화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.93, 476-481, January, 2021
Acceleration of petroleum based mesophase pitch formation by PET (polyethylene terephthalate) additive
E-mail:,
To improve mesophase formation in petroleum-based pitch, the PET (polyethylene terephthalate) additive reaction was studied. PFO (pyrolysis fuel oil) was used to prepare the petroleum pitch, and PET was added at a weight ratio of 0.33-1.50%. The chemical structure of PET-added pitch was analyzed by Fourier transform infrared spectroscopy, and the thermal properties were characterized by thermogravimetric analysis and the softening point method. Added PET provides oxygen during the pitch synthesis reaction, and the polycondensation of the pitch was accelerated by oxygen crosslinking. Thus, the softening point and carbonization value increased with the amount of PET added; moreover, the mesophase content increased by more than three times with 0.33 wt% PET addition. However, at more than 0.67 wt% PET addition, the fluidity rapidly decreased, so the mesophase spheres decreased in size and were independently distributed.
  1. Liu J, Shimanoe H, Nakabayashi K, Miyawaki J, Ko S, Jeon YP, Yoon SH, J. Ind. Eng. Chem., 67, 276 (2018)
  2. Mendoza-Carrasco R, Cuerda-Correa EM, Alexandre-Franco MF, Fernandez-Gonzalez C, Gomez-Serrano V, J. Environ. Manage., 181, 522 (2016)
  3. Lorenc-Grabowska E, Diez MA, Gryglewicz G, J. Colloid Interface Sci., 469, 205 (2016)
  4. Qiao WM, Song Y, Yoon SH, Korai Y, Mochida I, Yoshiga S, Fukuda H, Yamazaki A, Waste Manage., 26, 592 (2006)
  5. Qiao WM, Yoon SH, Mochida I, Yang JH, Waste Manage., 27, 1884 (2007)
  6. Liu D, Li M, Qu FJ, Yu R, Lou B, Wu CC, Niu JP, Chang GK, Energy Fuels, 30(3), 2066 (2016)
  7. Cheng XL, Zha QF, Zhong JT, Yang XJ, Fuel, 88(11), 2188 (2009)
  8. Cheng Y, Yang L, Luo T, Fang C, Su J, Hui J, J. Mater. Sci. Technol., 31, 857 (2015)
  9. Hatano H, Suginobe H, Fuel, 68, 1503 (1989)
  10. Charette A, Kocaefe D, Saint-Romain JL, Couderc P, Carbon, 29, 1015 (1991)
  11. Han YJ, Kim J, Yeo JS, An JC, Hong IP, Nakabayashi K, Miyawaki J, Jung JD, Yoon SH, Carbon, 94, 432 (2015)
  12. Kim BH, Kim JH, Kim JG, Im JS, Lee CW, Kim S, J. Ind. Eng. Chem., 45, 99 (2017)
  13. Kim BJ, Kotegawa T, Eom Y, An J, Hong IP, Kato O, Nakabayashi K, Miyawaki J, Kim BC, Mochida I, Carbon, 99, 649 (2016)
  14. Fernandez AL, Granda M, Bermejo J, Menendez R, Carbon, 38, 1315 (2000)
  15. Barr JB, Lewis IC, Carbon, 16, 439 (1978)
  16. Maeda T, Zheng SM, Tokumitsu K, Mondori J, Mochida I, Carbon, 31, 407 (1993)
  17. Zheng SM, Maeda T, Tokumitsu K, Mondori J, Mochida I, Carbon, 31, 413 (1993)
  18. Blanco C, Santamaria R, Bermejo J, Menendez R, Carbon, 38, 517 (2000)
  19. Forrest M, Harry M, Fuel, 62, 612 (1983)
  20. Zhang X, Ma Z, Meng Y, Xiao M, Fan B, Son H, J. Anal. Appl. Pyrolysis, 140, 274 (2019)
  21. Kim JH, Kim JG, Lee CW, Lee KB, Im JS, Carbon Lett., 23, 48 (2017)
  22. Zhang XW, Meng YC, Fan BL, Ma ZK, Song HH, Fuel, 243, 390 (2019)
  23. Holland BJ, Hay JN, Polymer, 43(6), 1835 (2002)
  24. Samperi F, Puglisi C, Alicata R, Montaudo G, Polym. Degrad. Stabil., 83, 3 (2004)
  25. Lou B, Liu D, Duan YJ, Hou XL, Zhang YD, Li ZH, Wang ZW, Li M, Energy Fuels, 31(9), 9052 (2017)
  26. Torregrosa-Rodriguez P, Martınez-Escandell M, Rodrıguez-Reinoso F, Marsh H, Salazar CG, Palazon ER, Carbon, 38, 535 (2000)
  27. Azami K, Yamamoto S, Sanada Y, Carbon, 32, 947 (1994)
  28. Huttinger KJ, Bernhauer M, Christ K, Gschwindt A, Carbon, 30, 931 (1992)
  29. Shui HF, Feng YT, Shen BX, Gao JS, Fuel Process. Technol., 55(2), 153 (1998)
  30. Moriyama R, Kumagai H, Hayashi JI, Yamaguchi C, Mondori J, Matsui H, Chiba T, Carbon, 38, 749 (2000)
  31. Mochida I, Maeda K, Takeshita K, Carbon, 15, 17 (1977)
  32. Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y, Carbon, 38, 305 (2000)
  33. Yoo MJ, Ko HJ, Lim YS, Kim MS, Carbon Lett., 15, 247 (2014)