Journal of Industrial and Engineering Chemistry, Vol.94, 145-158, February, 2021
Kinetic and gas-phase study of the chemical vapor deposition of silicon carbide from C2H3SiCl3/H2
E-mail:
The chemical vapor deposition (CVD) of silicon carbide from vinyltrichlorosilane (VTS) was studied to identify a range of conditions leading to pure crystalline SiC. The deposition rate was recorded to evidence the various deposition regimes. Gas phase, elemental analyses and infiltration tests were also performed. Three distinct chemical reaction regimes were identified. In CVD conditions, carbon is co-deposited at low temperature while VTS is only partially decomposed. In infiltration conditions, the composition switches to pure SiC inside the porous substrate because of a depletion of reactive hydrocarbon species. Competing heterogeneous reactions are responsible for a hysteresis versus temperature, in both deposition rate and composition of the deposit. The high temperature domain is the most suitable to deposit pure crystalline SiC in CVD conditions. Hydrogen dilution strongly accelerates the homogeneous decomposition of VTS as compared to argon. Assumptions on the reaction mechanism were proposed describing the chemistry of this precursor.
Keywords:Chemical vapor deposition;Vinyltrichlorosilane;Silicon carbide;Deposition kinetics;FTIR spectroscopy;Gas phase analysis
- Naslain R, Int. J. App. Ceram. Technol., 2, 5 (2005)
- Christin F, Adv. Eng. Mater., 4, 903 (2002)
- Lamon J, Handbook of Ceramic Composites, Springer, Boston, USA, pp.55 2005.
- Loumagne F, Langlais F, Naslain R, Schamm S, Dorignac D, Sevely J, Thin Solid Films, 254(1-2), 75 (1995)
- Zhang WG, Huttinger KJ, Chem. Vapor Deposit., 7, 173 (2001)
- DiCarlo JA, Wiley-American Ceramic Society, pp.217 2014.
- Loumagne F, Langlais F, Naslain R, J. Cryst. Growth, 155, 205 (1995)
- Yang Y, Zhang WG, J. Central South Univ. Technol., 16, 0730 (2009)
- Papasouliotis GD, Sotirchos SV, J. Mater. Res., 14, 3397 (1999)
- Josiek A, Langlais F, Bourrat X, Chem. Vapor Deposit., 2, 17 (1996)
- Papasouliotis G, Sotirchos S, Chem. Vapor Deposit., 4, 235 (1998)
- Lespiaux D, Langlais F, Naslain R, Schamm S, Sevely J, J. European Ceram. Soc., 15, 81 (1995)
- Schulberg MT, Allendorf MD, Outka DA, MRS Proceedings, Volume 410, pp.471 1995.
- Kuo DH, Cheng DJ, Shyy WJ, Hon MH, J. Electrochem. Soc., 137, 3688 (1990)
- Choi BJ, Jeun SH, Kim DR, J. European Ceram. Soc., 9, 357 (1992)
- Kim JI, Kim WJ, Choi DJ, Park JY, J. Nucl. Mater., 307, 108 (2002)
- Sotirchos SV, Kostjuhin IM, Vol. 96-5, Electrochemical Society Proceedings, pp.733 1996.
- Noda T, Araki H, Abe F, Okada M, J. Nucl. Mater., 191, 539 (1992)
- Araki H, Noda T, Yang W, Kohyama A, J. Nucl. Mater., 307, 1210 (2002)
- Taguchi T, Igawa N, Yamada R, Jitsukawa S, J. Phys. Chem. Solids, 66, 576 (2005)
- Yang W, Araki H, Kohyama A, Suzuki H, Noda T, Ceram. Int., 31, 47 (2005)
- Saigal A, Das N, Adv. Ceram. Mater., 3, 580 (1988)
- Cagliostro DE, Riccitiello SR, Carswell MG, J. Am. Ceram. Soc., 73, 607 (1990)
- Cagliostro DE, Riccitiello SR, J. Am. Ceram. Soc., 76, 39 (1993)
- Cagliostro DE, Riccitiello SR, Ren J, Zaghi F, J. Am. Ceram. Soc., 77, 2721 (1993)
- Cho MS, Kim JW, Chung GY, Korean J. Chem. Eng., 13(5), 515 (1996)
- Choi BJ, Park DW, Kim DR, J. Mater. Sci. Let., 16, 33 (1997)
- Takeuchi T, Egashira Y, Osawa T, Komiyama H, J. Electrochem. Soc., 145(4), 1277 (1998)
- Zhang WG, Huttinger KJ, Chem. Vapor Deposit., 7, 167 (2001)
- Desenfant A, PhD Thesis, University of Bordeaux, 2018.
- Reznik B, Huttinger HU, Carbon, 40, 621 (2002)
- Loumagne F, Langlais F, Naslain R, J. Cryst. Growth, 155, 198 (1995)
- Allendorf MD, Osterheld TH, Melius CF, Mater. Res. Soc. Symp. Proc., 334, 105 (1993)
- Kim HS, Choi DJ, J. Am. Ceram. Soc., 82, 331 (1999)
- Laduye G, PhD Thesis, University of Bordeaux, 2016.
- Mogab CJ, Leamy HJ, J. Appl. Phys., 45, 1075 (1974)
- Petrov GM, Giuliani JL, J. Appl. Phys., 90, 619 (2001)
- Danielsson O, Henry A, Janzen E, J. Cryst. Growth, 243(1), 170 (2002)
- Sukkaew P, Danielsson O, Kordina O, Janzen E, Ojamae L, J. Phys. Chem. C, 121, 1249 (2017)
- Lopez-Honorato E, Meadows PJ, Tan J, Xiao P, J. Mater. Res., 23, 1785 (2008)
- Tesner PA, Chemistry and Physics of Carbon, Vol. 19, Marcel Dekker Inc., New York, pp.65 1984.
- Pan CY, Chu CJ, Margrave JL, Hauge RH, J. Electrochem. Soc., 141(11), 3246 (1994)
- Rego CA, Tsang RS, May PW, Ashfold MNR, Rosser KN, J. Appl. Phys., 79, 7264 (1996)
- Papasouliotis GD, Sotirchos SV, J. Electrochem. Soc., 145(11), 3908 (1998)
- Kostjuhin IM, Sotirchos SV, Ind. Eng. Chem. Res., 40(12), 2586 (2001)
- Kostjuhin IM, Sotirchos SV, AIChE J., 48(12), 2910 (2002)
- Cavallotti C, Chem. Vap. Deposition, 16, 329 (2010)
- Josiek A, PhD Thesis, University of Bordeaux, 1995.
- Di Felice R, Pignedoli CA, Bertoni CM, Catellani A, Silvestrelli PL, Sbraccia C, Ancilotto F, Palummo M, Pulci O, Surf. Sci., 532, 982 (2003)
- Sotirchos SV, Papasouliotis GD, MRS Proceedings, Vol. 250, pp.35 1991.
- Wang CF, Tsai DS, Mater. Chem. Phys., 63(3), 196 (2000)