화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.94, 166-172, February, 2021
Janus black cellulose paper for fast volume reduction of liquid pollutant using solar steam generation
E-mail:
Recently, radioactive wastes are inevitable by-product due to rapid development and use of nuclear energy. Especially, there are large amount of liquid radioactive wastes to control nuclear fission reaction at nuclear generating station. In order to reduce total volume of solution state radioactive wastes, people have used solar evaporation without any specific instrument and it takes long time to get liquid state concentrated radioactive waste which is inefficient process. Herein we propose Janus-type membrane with different surface hydrophilicity toward efficient solar steam generation to concentrate radioactive liquid wastes. We used vapor deposition polymerization method to introduce polypyrrole (Py) and polystyrene (PS) on the top and bottom side of a cellulose paper. Py coating broadens the absorption wavelength range for enhanced photo-thermal energy conversion. Hydrophobic PS coating not only makes membrane easy to floating on water but also prevents salt accumulation during evaporation. Using this membrane, we can efficiently concentrate polluted water including Cs ion without salt accumulation on membrane, and thus no specific decrement in evaporation efficiency by time.
  1. Armini AJ, Bunker SN, in Radioactive medical device and process, Google Patents, (2000).
  2. Armini AJ, Bunker SN, in Radioactive medical devices, Google Patents, (2000).
  3. Baker RJ, Hamilton MJ, Van Den Bussche RA, Wiggins LE, Sugg DW, Smith MH, Lomakin MD, Gaschak SP, Bundova EG, Rudenskaya GA, J. Mamm., 77, 155 (1996)
  4. McCollough PBASCH, Atwell TD, Braun NM, Regner DM, Brown DL, LeRoy AJ, RadioGraphics, 27 (2007).
  5. Kihana T, Tsuda H, Teshima S, Okada S, Matsuura S, Hirohashi S, Jpn. J. Cancer Res., 83, 978 (1992)
  6. Hamstra J, Nuclear Safety, 16, 180 (1975)
  7. Horwitz EP, Dietz M, Chiarizia R, J. Radioanal. Nucl. Chem., 161, 575 (1992)
  8. Queiser H, Schwarz H, Schroter HJ, in Process of radioactive waste gases, Google Patents, (1975).
  9. Spence RD, Tamura T, in In situ grouting of shallow landfill radioactive waste trenches, ASTM International, (1989).
  10. Chang NB, Shoemaker CA, Schuler RE, Waste Manage. Res., 14, 463 (1996)
  11. McCullough G, Ind. Eng. Chem., 43, 1505 (1951)
  12. Hagger JA, Atienzar FA, Jha AN, Aquat. Toxicol., 74, 205 (2005)
  13. Sylvester P, Milner T, Jensen J, J. Chem. Technol. Biotechnol., 88, 1592 (2013)
  14. Khamis I, Jouhara H, Anastasov V, Desalination Water Treat., 13, 82 (2010)
  15. Duoerkun G, Zhang Y, Shi Z, Shen X, Cao W, Liu T, Liu J, Chen Q, Zhang L, Adv. Fiber Mater., 2, 13 (2020)
  16. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED, Prog. Photovoltaics Res. Appl., 23, 1 (2015)
  17. Zhao F, Zhou XY, Shi Y, Qian X, Alexander M, Zhao XP, Mendez S, Yang RG, Qu LT, Yu GH, Nat. Nanotechnol., 13(6), 489 (2018)
  18. Meng X, Xu W, Li J, Yang J, Zhao J, Zou X, Sun Y, Dai Y, Adv. Fiber Mater., 2, 93 (2020)
  19. Ghasemi H, Ni G, Marconnet AM, Loomis J, Yerci S, Miljkovic N, Chen G, Nat. Commun., 5, 4449 (2014)
  20. Ito Y, Tanabe Y, Han JH, Fujita T, Tanigaki K, Chen MW, Adv. Mater., 27(29), 4302 (2015)
  21. Zhang P, Li J, Lv L, Zhao Y, Qu L, ACS Nano, 11, 5087 (2017)
  22. Bae K, Ku BJ, Kim Y, Mnoyan A, Lee K, Lee KJ, ACS Appl. Mater. Interfaces, 11, 4531 (2019)
  23. Bae K, Kang G, Cho SK, Park W, Kim K, Padilla WJ, Nat. Commun., 6, 10103 (2015)
  24. Zielinski MS, Choi JW, La Grange T, Modestino M, Hashemi SM, Pu Y, Birkhold S, Hubbell JA, Psaltis D, Nano Lett., 16, 2159 (2016)
  25. Chen Q, Pei Z, Xu Y, Li Z, Yang Y, Wei Y, Ji Y, Chem. Sci., 9, 623 (2018)
  26. Jiang F, Liu H, Li Y, Kuang Y, Xu X, Chen C, Huang H, Jia C, Zhao X, Hitz E, Zhou Y, Yang R, Cui L, Hu L, ACS Appl. Mater. Interfac, 10, 1104 (2018)
  27. He S, Chen C, Kuang Y, Mi R, Liu Y, Pei Y, Kong W, Gan W, Xie H, Hitz E, et al.,, Energy Environ. Sci., 12, 1558 (2019)
  28. Liu KK, Jiang Q, Tadepalli S, Raliya R, Biswas P, Naik RR, Singamaneni S, ACS Appl. Mater. Interfaces, 9, 7675 (2017)
  29. Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J, Nature Photonics, 10, 393 (2016)
  30. Neumann O, Feronti C, Neumann AD, Dong A, Schell K, Lu B, Kim E, Quinn M, Thompson S, Grady N, Nordlander P, Oden M, Halas NJ, Proc. Natl. Acad. Sci. U.S.A., 110, 11677 (2013)
  31. Xu W, Xing Y, Liu J, Wu H, Cui Y, Li D, Guo D, Li C, Liu A, Bai H, ACS Nano, 13, 7930 (2019)
  32. Zhang Y, Zhao D, Yu F, Yang C, Lou J, Liu Y, Chen Y, Wang Z, Tao P, Shang W, Wu J, Song C, Deng T, Nanoscale, 9, 19384 (2017)
  33. Chang C, Tao P, Xu J, Fu B, Song C, Wu J, Shang W, Deng T, ACS Appl. Mater. Interfaces, 11, 18466 (2019)
  34. Gong F, Li H, Wang W, Huang J, Xia D, Liao J, Wu M, Papavassiliou DV, Nano Energy, 58, 322 (2019)
  35. Go K, Bae K, Choi H, Kim HY, Lee KJ, ACS Appl. Mater. Interfaces, 11, 48300 (2019)
  36. Jang J, Lim B, Angew. Chem.-Int. Edit., 42, 5600 (2003)
  37. Hakansson E, Amiet A, Nahavandi S, Kaynak A, Eur. Polym. J., 43, 205 (2007)
  38. Ravindra NM, Sopori B, Gokce OH, Cheng SX, Shenoy A, Jin L, Abedrabbo S, Chen W, Zhang Y, Int. J. Thermophys., 22, 1593 (2001)