Journal of Industrial and Engineering Chemistry, Vol.94, 264-271, February, 2021
Amorphous-crystalline dual phase WO3 synthesized by pulsed-voltage electrodeposition and its application to electrochromic devices
E-mail:
A facile one-step pulsed-voltage electrodeposition (PVE) is used to prepare nanoporous amorphous-crystalline dual-phase tungsten trioxide (WO3) thin films onto indium-doped tin oxide (ITO) glass substrates. The dual-phase WO3 films exhibit superior electrochemical and electrochromic abilities because the amorphous WO3 disordered structure provides many ion trapping sites, and the crystalline WO3 imbedded in the amorphous matrix improves the electron mobility. Besides, the highly porous morphology not only enhances the electrochemical active surface area, but also offers an efficient pathway for ion diffusion and charge transfer. The nanoporous amorphous-crystalline PVE-WO3 thin films possess a large optical modulation (ΔT) of 80.1% at 700 nm, fast switching speed (tc/tb) of 2.9 s/2.1 s, and high coloration efficiency (CE) of 141 cm2·C-1 at 700 nm. On the other hand, single phase amorphous or crystalline WO3 films exhibit inferior electrochromic performances with ΔT of 57.23% and 62.51%, tc/tb of 3.7 s/2.9 s and 4.1 s/3.3 s, and CE of 68 and 63 cm2·C-1 at 700 nm, respectively. In addition, the amorphous-crystalline PVE-WO3 films exhibit excellent cycling stability (sustain 94.5% of the initial optical modulation after 25 cycles) and maintain their colored state for a longer time under open circuit, when compared to the conventional amorphous WO3 film. These results suggest that the amorphous-crystalline dual phase WO3 prepared by one-step PVE can be employed as an economical, highly efficient, and stable electrode material in various applications such as electrochromic smart window, batteries, supercapacitors, and photoelectrochemical water splitting cells.
Keywords:Amorphous-crystalline dual phase;Coloration efficiency;Electrochromic;Pulsed-voltage electrodeposition;Tungsten trioxide
- Lampert CM, Sol. Energy Mater. Sol. Cells, 76(4), 489 (2003)
- Granqvist CG, Sol. Energy Mater. Sol. Cells, 99, 1 (2012)
- Cai G, Cui M, Kumar V, Darmawan P, Wang J, Wang X, Lee-Sie Eh A, Qian K, Lee PS, Chem. Sci., 7, 1373 (2016)
- Cai G, Tu J, Zhou D, Li L, Zhang J, Wang X, Gu C, CrystEngComm, 16, 6866 (2014)
- Lin F, Cheng J, Engtrakul C, Dillon AC, Nordlund D, Moore RG, Weng TC, Williams SKR, Richards RM, J. Mater. Chem., 22, 16817 (2012)
- Zhang X, Dou SL, Li WJ, Wang LB, Qu HY, Chen X, Zhang LP, Zhao YM, Zhao JP, Li Y, Electrochim. Acta, 297, 223 (2019)
- Cai G, Wang J, Lee PS, Accounts Chem. Res., 49, 1469 (2016)
- Wu W, Wang M, Ma J, Cao Y, Deng Y, Adv. Electron. Mater., 4, 180018 (2018)
- Dalavi DS, Devan RS, atil RA, Patil RS, Ma YR, Sadale SB, Kim I, Kim JH, J. Mater. Chem. C, 1, 3722 (2013)
- Park SY, Lee JM, Noh C, Son SU, J. Mater. Chem., 19, 7959 (2009)
- Deb SK, Sol. Energy Mater. Sol. Cells, 92(2), 245 (2008)
- Lee SH, Deshpande R, Parilla PA, Jones KM, To B, Mahan AH, Dillon AC, Adv. Mater., 18(6), 763 (2006)
- Kamal H, Akl AA, Abdel-Hady K, Physica B, 349, 192 (2004)
- Poongodi S, Kumar PS, Masuda Y, Mangalaraj D, Ponpandian N, Viswanathan C, Ramakrishna S, RSC Adv., 5, 96416 (2015)
- Zhang J, Tu JP, Xia XH, Wang XL, Gu CD, J. Mater. Chem., 21, 5492 (2011)
- Ozkan E, Lee SH, Tracy CE, Pitts JR, Deb SK, Sol. Energy Mater. Sol. Cells, 79(4), 439 (2003)
- Antonaia A, Addonizio ML, Minarini C, Polichetti T, Vittori-Antisari M, Electrochim. Acta, 46(13-14), 2221 (2001)
- Zhou D, Xie D, Shi F, Wang DH, Ge X, Xia XH, Wang XL, Gu CD, Tu JP, J. Colloid Interface Sci., 460, 200 (2015)
- Mulukutla M, Kommineni VK, Harimkar SP, Appl. Surf. Sci., 258(7), 2886 (2012)
- Lee J, Farhangfar S, Lee J, Cagnon L, Scholz R, Gosele U, Nielsch K, Nanotechnology, 19, 365701 (2008)
- Poongodi S, Kumar PS, Mangalaraj D, Ponpandian N, Meena P, Masuda Y, Lee C, J. Alloy. Compd., 719, 71 (2017)
- Vijayakumar E, Yun YH, Quy VHV, Lee YH, Kang SH, Ahn KS, Lee SW, J. Electrochem. Soc., 166(4), D86 (2019)