화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.33, No.1, 45-63, February, 2021
Structure-rheology elucidation of human blood via SPP framework and TEVP modeling
E-mail:
Recent work modeling the rheological behavior of human blood indicates that it has all the hallmark features of a complex material, including shear-thinning, viscoelastic behavior, a yield stress, and thixotropy. After decades of modeling steady state blood data, and the development of simple steady state models, like the Casson and Herschel-Bulkley the advancement and evolution of blood modeling to incorporate more thixo-elasto-visco-plastic (TEVP) features to accurately capture transient flow has renewed interest. With recently collected steady state and oscillatory shear flow rheological data from a DHR-3 using human blood, we show modeling efforts with a contemporary thixo-elasto-visco-plastic (TEVP) model. Best fit rheological model parameters are used to determine values for normal, healthy blood and corroborate correlations from literature. Series of physical processes (SPP) analysis is incorporated to illustrate how mechanical properties are tied to the transient, evolving microstructure of human blood and physiological parameters. Using LAOS data predictions of the structure parameter, λ is compared, and correlated with the transient elastic modulus, G t' .
  1. Apostolidis AJ, Beris AN, J. Rheol., 58(3), 607 (2014)
  2. Apostolidis AJ, Beris AN, Rheol. Acta, 55(6), 497 (2016)
  3. Apostolidis AJ, Armstrong MJ, Beris AN, J. Rheol., 59(1), 275 (2015)
  4. Armstrong MJ, Beris AN, Rogers SA, Wagner NJ, J. Rheol., 60(3), 433 (2016)
  5. Armstrong MJ, Beris AN, Wagner NJ, AIChE J., 63(6), 1937 (2017)
  6. Armstrong M, Horner J, Clark M, Deegan M, Hill T, Keith C, Mooradian L, Rheol. Acta, 57(11), 705 (2018)
  7. Armstrong M, Rheology and physiology from USMA, Mendeley Data, V1 2020a.
  8. Armstrong M, USMA DHR-3 LAOS data, Mendeley Data, V1 2020b.
  9. Banyai S, Banyai M, Falger J, Jansen M, Alt E, Derfler K, Koppensteiner R, Atherosclerosis, 159, 513 (2001)
  10. Baskurt OK, Meiselman HJ, Semin. Thromb. Hemost., 29, 435 (2003)
  11. Bautista F, de Santos JM, Puig JE, Manero O, J. Non-Newton. Fluid Mech., 80(2-3), 93 (1999)
  12. Blackwell BC, Ewoldt RH, J. Non-Newton. Fluid Mech., 208, 27 (2014)
  13. Bouchard BA, Tracy PB, Curr. Opin. Hematol., 8, 263 (2001)
  14. Bureau M, Healy JC, Bourgoin D, Joly M, Rheol. Acta, 17, 612 (1978)
  15. Bureau M, Healy JC, Bourgoin D, Joly M, Rheol. Acta, 18, 756 (1979)
  16. Bureau M, Healy JC, Bourgoin D, Joly M, Biorheology, 17, 191 (1980)
  17. Carallo C, Irace C, De Franceschi MS, Esposito T, Tripolino C, Scavelli F, Merante V, Gnasso A, Clin. Hemorheol. Microcirc., 55, 223 (2013)
  18. Cokelet, GH, Hemorheology and Hemodynamics, Morgan & Claypool Life Science, San Rafael, 1-17 2011.
  19. Craveri A, Tornaghi G, Paganardi L, Ranieri R, Scaglioni S, Torchiana M, Giovannini M, Clin. Hemorheol. Microcirc., 8, 723 (1988)
  20. Destiana D, Timan IS, , J. Phys. Conf. Ser, 1073, 042045 (2018)
  21. Dimitriou CJ, Ewoldt RH, McKinley GH, J. Rheol., 57(1), 27 (2013)
  22. Donley GJ, Hyde WW, Rogers SA, Nettesheim F, Rheol. Acta, 58(6-7), 361 (2019)
  23. Doolittle RF, The Evolution of Vertebrate Blood Clotting, University Science Books, Mill Valley 2013.
  24. Dullaert K, Mewis J, J. Non-Newton. Fluid Mech., 139(1-2), 21 (2006)
  25. Ewoldt RH, J. Rheol., 57(1), 177 (2013)
  26. Fasano A, Sequeira A, Hemomath, Springer International Publishing, Cham 2017.
  27. Gyawali P, Richards RS, Nwose EU, Bwiti PT, Clin. Lipidol., 7, 709 (2012)
  28. Horner JS, Armstrong MJ, Wagner NJ, Beris AN, J. Rheol., 62(2), 577 (2018)
  29. Horner JS, Armstrong MJ, Wagner NJ, Beris AN, J. Rheol., 63(5), 799 (2019)
  30. Jamali S, McKinley GH, Armstrong RC, Phys. Rev. Lett., 118, 048003 (2017)
  31. Kesmarky G, Peter K, Miklos R, Kalman T, Clin. Hemorheol. Microcirc., 39, 243 (2008)
  32. Lee H, Na W, Lee SB, Ahn CW, Moon JS, Won KC, Shin S, Front. Physiol., 10, 1062 (2019)
  33. Litvinov RI, Weisel JW, ISBT Sci. Ser., 2, 176 (2017)
  34. Lowe GDO, Clin. Sci., 71, 137 (1986)
  35. Matlab Documentation, corrcoeff, correlation coefficients, 9.7.0.1296695 R2019b, Update 4, The MathWorks, Inc 2019.
  36. Mewis J, Wagner NJ, Adv. Colloid Interface Sci., 147-148, 214 (2009)
  37. Mewis J, Wagner NJ, Colloidal Suspension Rheology, Cambridge University Press, New York, 25-30 2012.
  38. Moreno L, Calderas F, Sanchez-Olivares G, Medina-Torres L, Sanchez-Solis A, Manero O, Korea-Aust. Rheol. J., 27, 10 (2015)
  39. Mujumdar A, Beris AN, Metzner AB, J. Non-Newton. Fluid Mech., 102(2), 157 (2002)
  40. Muller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, et al., Cell, 139, 1143 (2009)
  41. Pirkl L, Bodnar T, Fifth European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal 2010.
  42. Poston RN, Cardiovasc. Endocrinol. Metab., 8, 51 (2019)
  43. Puig JE, Bautista F, Hernandez E, Lopez-Serrano F, AIChE J., 64(10), 3735 (2018)
  44. Reasor DA, Clausen JR, Aidun CK, J. Fluid Mech., 726, 497 (2013)
  45. Rogers SA, Rheol. Acta, 56(5), 501 (2017)
  46. Shibeshi S, Collins W, Appl. Rheol., 15, 398 (2005)
  47. Smith SA, Morrissey JH, Blood, 112, 2810 (2008)
  48. Smith SA, Morrissey JH, J. Thromb. Haemost., 6, 1750 (2008)
  49. Sousa PC, Carneiro J, Vaz R, Cerejo A, Pinho FT, Alves MA, Oliveira MSN, Biorheology, 50, 269 (2013)
  50. Taylor R, J. Diagn. Med. Sonogr., 6, 35 (1990)
  51. Tomaiuolo G, Carciati A, Caserta S, Guido S, Rheol. Acta, 55(6), 485 (2016)
  52. Windberger U, Bartholovitsch A, Plasenzotti R, Korak KJ, Heinze G, Exp. Physiol., 88, 431 (2003)