화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.3, 617-623, March, 2021
Photocatalytic degradation characteristics of heterojunction SnO2-CuxO nanopowders of methylene blue under UV light
E-mail:,
p-n heterojunction was constructed using p-type Cupric oxide (CuO) and n-type Tin (IV) oxide (SnO2) nanoparticles using chemical synthesis and annealing method. The synthesized SnO2-CuO nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), etc. The methylene blue (MB) degradation ability of the synthesized SnO2-CuO nanocomposite was investigated under UV illumination. Compared to the undoped SnO2, the SnO2-CuO p-n heterojunction exhibited enhanced MB degradation capability due the effective separation of electron-holes pair that suppresses the recombination. Based on the experimental results, the charge dynamics and the probable dye degradation mechanism via SnO2-CuO nanoparticles was proposed.
  1. Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F, Agarwal S, Gupta VK, J. Photochem. Photobiol. B-Biol., 173, 43 (2017)
  2. Zheng XJ, Wei YJ, Wei LF, Xie B, Wei MB, Int. J. Hydrog. Energy, 35(21), 11709 (2010)
  3. Khairol NF, Sapawe N, Danish M, Mater. Today: Proceedings, 19, 1333 (2019)
  4. Shivaramu PD, Patil A, Murthy M, Tubaki S, Shastri M, Manjunath S, Gangaraju V, Rangappa D, Mater. Today: Proceedings, 4, 12314 (2017)
  5. Xia HI, Zhuang HS, Zhang T, Xiao DC, J. Environ. Sci., 19, 1141 (2007)
  6. Enesca A, Isac L, Duta A, Thin Solid Films, 542, 31 (2013)
  7. Bessekhouad Y, Robert D, Weber J, J. Photochem. Photobiol. A-Chem., 163, 569 (2004)
  8. Kohtani S, Tomohiro M, Tokumura K, Nakagaki R, Appl. Catal. B: Environ., 58(3-4), 265 (2005)
  9. Mamaghani AH, Haghighat F, Lee CS, Appl. Catal. B: Environ., 203, 247 (2017)
  10. Zaleska A, Recent Patents on Eng., 2, 157 (2008).
  11. Ahmad M, Ahmed E, Zhang YW, Khalid NR, Xu JF, Ullah M, Hong ZL, Curr. Appl. Phys., 13(4), 697 (2013)
  12. Dozzi MV, Selli E, J. Photochem. Photobiol. C: Photochem. Rev., 14, 13 (2013).
  13. Gavade NL, Babar SB, Kadam AN, Gophane AD, Garadkar KM, Ind. Eng. Chem. Res., 56(49), 14489 (2017)
  14. Kumar R, Kumar G, Umar A, Mater. Lett., 97, 100 (2013)
  15. Lee J, Lee Y, Youn JK, Na HB, Yu T, Kim H, Lee SM, Koo YM, Kwak JH, Park HC, Small, 4, 143 (2008)
  16. Lin C, Song Y, Cao L, Chen S, J. Chin. Adv. Mater. Soc., 1, 188 (2013)
  17. Saravanan R, Karthikeyan S, Gupta V, Sekaran G, Narayanan V, Stephen A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 33, 91 (2013)
  18. Mounkachi O, Salmani E, Lakhal M, Ez-Zahraouy H, Hamedoun M, Benaissa M, Kara A, Ennaoui A, Benyoussef A, Sol. Energy Mater. Sol. Cells, 148, 34 (2016)
  19. Babu B, Kadam A, Ravikumar R, Byon C, J. Alloy. Compd., 703, 330 (2017)
  20. Leontyev IN, Chernyshov DY, Guterman VE, Pakhomova EV, Guterman AV, Appl. Catal. A: Gen., 357(1), 1 (2009)
  21. Thanh NTK, Maclean N, Mahiddine S, Chem. Rev., 114(15), 7610 (2014)
  22. Uddin MT, Nicolas Y, Olivier C, Toupance T, Servant L, Muller MM, Kleebe HJ, Ziegler J, Jaegermann W, Inorg. Chem., 51(14), 7764 (2012)
  23. Poulston S, Parlett P, Stone P, Bowker M, Surf. Interface Anal., 24, 811 (1996)
  24. Chen W, Li Q, Gan H, Zeng W, Adv. Appl. Ceram.., 113, 139 (2014)
  25. Chuai M, Chen X, Zhang K, Zhang J, Zhang M, J. Mater. Chem. A, 7, 1160 (2019)