화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 57-65, March, 2021
Oxalated blast-furnace slag for the removal of Cobalt(II) ions from aqueous solutions
E-mail:
This study showcases an original blast-furnace slag, an industrial waste material, successfully and readily converted into Slag-Oxalate (Slag-Ox) to capture Co2+. The obtained material exhibited a fast adsorption rate and a maximum adsorption capacity of 576 mg/g, which is the highest Co2+ adsorption capacity achieved to date. The adsorption kinetics and isotherms of Slag-Ox for Co2+ were well-fitted by the pseudo-second order and Sips models, respectively. Ion exchange between Ca2+ and Co2+ was the main adsorption mechanism. Slag-Ox exhibited stable adsorption performance at pH 5.9 and was chemically stable at wider pH ranges. As the temperature increased, the adsorption capacity also increased. Furthermore, Slag-Ox removed Cs+ and Sr2+ ions from multi-metal aqueous solutions, revealing its potential for the remediation of radiocesium- and radiostrontium-contaminated waters. Overall results demonstrated that Slag-Ox is an effective and low-cost cobalt adsorbent and highlighted that waste material recycling will contribute to the betterment of industrial waste management.
  1. Zhang X, Liu Y, Environ. Sci.: Nano, 7, 1008 (2020)
  2. Song XL, Li L, Zhou L, Chen P, Chem. Eng. Res. Des., 136, 581 (2018)
  3. Wang Y, Huang H, Duan S, Liu X, Sun J, Hayat T, Alsaedi A, Li J, ACS Sustain. Chem. Eng., 6, 2462 (2018)
  4. Zhao G, Li J, Ren X, Chen C, Wang X, Environ. Sci. Technol., 45, 10454 (2011)
  5. Dhiman S, Gupta B, J. Clean Prod., 225, 820 (2019)
  6. Kara I, Tunc D, Sayin F, Akar ST, Appl. Clay Sci., 161, 184 (2018)
  7. Qiu W, Zheng Y, Chem. Eng. J., 145(3), 483 (2009)
  8. Zhang Lan, Wei Jiying, Zhao Xuan, Li Fuzhi, Jiang Feng, Zhang Meng, Cheng Xuzhou, Chem. Eng. J., 302, 733 (2016)
  9. Koilraj P, Kalusulingam R, Sasaki K, Chem. Eng. J., 374, 359 (2019)
  10. Peng Y, Huang H, Zhang Y, Kang C, Chen S, Song L, Liu D, Zhong C, Nat. Commun., 9, 187 (2018)
  11. Shao N, Tang S, Liu Z, Li L, Yan F, Liu F, Li S, Zhang Z, ACS Sustain. Chem. Eng., 6, 14926 (2018)
  12. Ma J, Qin G, Zhang Y, Sun J, Wang S, Jiang L, J. Clean Prod., 182, 776 (2018)
  13. Repo E, Warchol JK, Westholm LJ, Sillanpaa M, J. Ind. Eng. Chem., 27, 115 (2015)
  14. Gao Y, Jiang J, Tian S, Li K, Yan F, Liu N, Yang M, Chen X, Sci. Rep., 7, 11177 (2017)
  15. Kim EH, Yim SB, Jung HC, Lee EJ, J. Hazard. Mater., 136(3), 690 (2006)
  16. Yang L, Wen T, Wang L, Miki T, Bai H, Lu X, Yu H, Nagasaka T, J. Environ. Manage., 231, 41 (2019)
  17. Tsutsumi T, Nishimoto S, Kameshima Y, Miyake M, J. Hazard. Mater., 266, 174 (2014)
  18. Verma A, Kore R, Corbin DR, Shiflett MB, Ind. Eng. Chem. Res., 58(34), 15381 (2019)
  19. Singer DM, Johnson SB, Catalano JG, Farges F, Brown GE, Geochim. Cosmochim. Acta, 72, 5055 (2008)
  20. Le QTN, Cho K, J. Colloid Interface Sci., 581, 741 (2020)
  21. Sun XY, Ouyang JM, Xu M, CrystEngComm, 18, 5463 (2016)
  22. Sun XY, Zhang CY, Bhadja P, Ouyang JM, CrystEngComm, 20, 75 (2018)
  23. Ihli J, Wang YW, Cantaert B, Kim YY, Green DC, Bomans PHH, Sommerdijk NAJM, Meldrum FC, Chem. Mater., 27, 3999 (2015)
  24. Selvaraju R, Thiruppathi G, Raja A, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 93, 260 (2012)
  25. Xu B, Yi Y, Appl. Clay Sci., 178, 105136 (2019)
  26. Cychosz KA, Guillet-Nicolas R, Garcia-Martinez J, Thommes M, Chem. Soc. Rev., 46, 389 (2017)
  27. Khandaker S, Toyohara Y, Kamida S, Kuba T, J. Environ. Manage., 222, 304 (2018)
  28. Huang SY, Chen PZ, Yan B, Wang SP, Shen YL, Ma XB, Ind. Eng. Chem. Res., 52(19), 6349 (2013)
  29. Alam Q, Hendrix Y, Thijs L, Lazaro A, Schollbach K, Brouwers HJH, J. Clean Prod., 211, 874 (2019)
  30. Freeman ES, Carroll B, J. Phys. Chem., 62, 394 (1958)
  31. Wang D, Wang Q, Wang T, Inorganic Chem., 50, 6482 (2011)
  32. Kyzas GZ, Deliyanni EA, Matis KA, Colloids Surf. A: Physicochem. Eng. Asp., 490, 74 (2016)
  33. Wu J, Zhou J, Zhang SW, Alsaedi A, Hayat T, Li JX, Song YT, J. Colloid Interface Sci., 555, 403 (2019)
  34. Shahat A, Awual MR, Naushad M, Chem. Eng. J., 271, 155 (2015)
  35. Yuan GY, Tian Y, Liu J, Tu H, Liao JL, Yang JJ, Yang YY, Wangc DQ, Liu N, Chem. Eng. J., 326, 691 (2017)
  36. Mahmood T, Saddique MT, Naeem A, Westerhoff P, Mustafa S, Alum A, Ind. Eng. Chem. Res., 50(17), 10017 (2011)
  37. Do DD, Adsorption analysis: equilibria and kinetics, Imperial college press London, 1998.
  38. Gabor AE, Davidescu CM, Negrea A, Ciopec M, Butnariu M, Ianasi C, Muntean C, Negrea P, J. Chem. Eng. Data, 61(1), 535 (2016)
  39. Smiciklas I, Dimovic S, Plecas I, Mirtic M, Water Res., 40, 2267 (2006)
  40. Hernandez-Ramirez O, Hill PI, Doocey DJ, Holmes SM, J. Mater. Chem., 17, 1804 (2007)
  41. Liu Y, J. Chem. Eng. Data, 54(7), 1981 (2009)
  42. Nightingale E, J. Phys. Chem., 63, 1381 (1959)
  43. Namasivayam C, Ranganathan K, Water Res., 29, 1737 (1995)
  44. Shaw DJ, Introduction to colloid and surface chemistry, Butterworths, 1980.
  45. Ma B, Oh S, Shin WS, Choi SJ, Desalination, 276(1-3), 336 (2011)
  46. Mertz JL, Fard ZH, Malliakas CD, Manos MJ, Kanatzidis MG, Chem. Mater., 25, 2116 (2013)
  47. Yang YY, Song WJ, Ferrier J, Liu FX, Csetenyi L, Gadd GM, Appl. Microbiol. Biotechnol., 104(1), 417 (2020)
  48. Bolz RE, CRC handbook of tables for applied engineering science, CRC press, 1973.