화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 286-291, March, 2021
Demonstration of the one-step continuous fabrication of flexible polymer ridge waveguides via nanochannel-guided lithography
E-mail:, ,
We demonstrate a facile one-step fabrication of flexible ridge waveguides by using the nanochannelguided lithography (NCL) that enables continuous extrusion of a polymer that forms waveguiding core ridge on an undercladding polymer substrate. NCL utilizes a well-cleaved mold edge with microtrench patterns to slide continuously over a UV-curable liquid resin-coated substrate under conformal contact, where the resin and substrate can be chosen for suitable waveguide core and undercladding materials. The local heating of a trench mold can control the viscosity of liquid resin for optimal filling into the microchannels followed by smooth extrusion, which is subsequently UV-cured. Such a smoothly extruded resin core exhibits a very smooth surface potentially promising for the low-loss waveguiding operation which was experimentally confirmed by optical insertion loss characterization. The proposed technique may provide a practical route to the continuous and seamless fabrication of scalable waveguides and photonic elements.
  1. Cassan E, Laval S, Lardenois S, Koster A, IEEE J. Sel. Top. Quantum Electron., 9(2), 460 (2003)
  2. Chen GFR, Zhao XY, Sun Y, He CB, Tan MC, Tan DTH, Sci. Rep., 7 (2017)
  3. Carvalho DO, Kassab LRP, Del Cacho VD, da Silva DM, Alayo MI, J. Lumines., 203, 135 (2018)
  4. Deng KL, Gorczyca T, Lee BK, Xia H, Guida R, Karras T, IEEE J. Sel. Top. Quantum Electron., 12(5), 923 (2006)
  5. Kim JT, Ju JJ, Park S, Kim MS, Park SK, Lee MH, Opt. Express, 16, 13133 (2008)
  6. Lin XH, Ling T, Subbaraman H, Zhang XY, Byun K, Guo LJ, Chen RT, Opt. Lett., 38(10), 1597 (2013)
  7. Prajzler V, Hyps P, Mastera R, Nekvindova P, Radioengineering, 25(2), 230 (2016)
  8. Guo JJ, Yang CX, Dai QH, Kong LJ, Sensors, 19(17) (2019)
  9. Prajzler V, Neruda M, Kveton M, J. Mater. Sci. Mater. Electron., 30(18), 16983 (2019)
  10. Lee KK, Lim DR, Luan HC, Agarwal A, Foresi J, Kimerling LC, Appl. Phys. Lett., 77(11), 1617 (2000)
  11. Gao F, Wang Y, Cao G, Jia X, Zhang F, Appl. Phys. B-Lasers Opt., 81(5), 691 (2005)
  12. Gao F, Wang Y, Cao G, Jia X, Zhang F, Appl. Surf. Sci., 252(14), 5071 (2006)
  13. Guo LJ, Adv. Mater., 19(4), 495 (2007)
  14. Ok JG, Shin YJ, Park HJ, Guo LJ, Appl. Phys. A-Mater. Sci. Process., 121(2), 343 (2015)
  15. Chao CY, Guo LJ, J. Vacuum Sci. Technol. B, 20(6), 2862 (2002)
  16. Ok JG, Youn HS, Kwak MK, Lee KT, Shin YJ, Guo LJ, Greenwald A, Liu YS, Appl. Phys. Lett., 101(22), 4 (2012)
  17. Zhang C, Chen SL, Ling T, Guo LJ, IEEE Sens. J., 15(6), 3241 (2015)
  18. Zhang C, Chen SL, Ling T, Guo LJ, J. Lightwave Technol., 33(20), 4318 (2015)
  19. Zhang C, Subbaraman H, Li QC, Pan ZY, Ok JG, Ling T, Chung CJ, Zhang XY, Lin XH, Chen RT, Guo LJ, J. Mater. Chem. C, 4(23), 5133 (2016)
  20. Ok JG, Park HJ, Kwak MK, Pina-Hernandez CA, Ahn SH, Guo LJ, Adv. Mater., 23(38), 4444 (2011)
  21. Ok JG, Ahn SH, Kwak MK, Guo LJ, J. Mater. Chem. C, 1(46), 7681 (2013)
  22. Oh DK, Lee S, Lee SH, Lee W, Yeon G, Lee N, Han KS, Jung S, Kim DH, Lee DY, Park HJ, Ok JG, ACS Nano, 13(10), 11194 (2019)
  23. Pina-Hernandez C, Guo LJ, Fu PF, ACS Nano, 4(8), 4776 (2010)
  24. Ling T, Chen SL, Guo LJ, Opt. Express, 19, 861 (2011)
  25. Ling T, Chen SL, Guo LJ, Appl. Phys. Lett., 98(20) (2011)
  26. Gao F, Ylinen S, Kainlauri M, Kapulainen M, J. Micro Nanolithogr. MEMS MOEMS, 13(1) (2014)
  27. Ok JG, Panday A, Lee T, Guo LJ, Nanoscale, 6(24), 14636 (2014)
  28. Oh DK, Nguyen DT, Lee S, Ko P, Heo GS, Yun CH, Ha TW, Youn H, Ok JG, ACS Appl. Mater. Interfaces, 11(12), 12070 (2019)
  29. Selvaraja SK, Sethi P, Emerging Waveguide Technology, IntechOpen, London, 2018.
  30. Nordstrom M, Zauner DA, Boisen A, Hubner J, J. Lightwave Technol., 25(5), 1284 (2007)
  31. Lee JH, Na M, Kim J, Yoo K, Park J, Kim JD, Oh DK, Lee S, Youn H, Kwak MK, Ok JG, Nano Converg., 4(1), 11 (2017)