화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.95, 340-349, March, 2021
Titanium-modified MCM-41 molecular sieves as efficient supports to increase the hydrogenation abilities of NiMoS and CoMoS catalysts
E-mail:
Ti modified MCM-41-supported NiMo and CoMo catalysts and their respective Ti free reference catalysts were prepared, characterized, and tested for the hydrodesulfurization reactions. The samples were synthesized by well-known procedures, such as liquid crystal templating and successive impregnation method for the supports and catalysts, respectively. Ti precursor was directly incorporated into the micellar solution before adding the silica precursor at different molar Si/Ti ratios (x = 75 and 50). Fourier transform infrared spectroscopy, solid-state 29Si-nuclear magnetic resonance, small- and wide-angle Xray diffraction, and nitrogen physisorption were used as characterization techniques. Four sulfided catalysts were also characterized by high-resolution transmission electron microscopy. The catalysts showed important increases in the reaction rates during both thiophene and dibenzothiophene hydrodesulfurization when the support was structurally modified with Ti-atoms. The samples supported on Ti-MCM-41(75) presented a higher activity than those supported on Ti-MCM-41(50), and they were superior to their respective Si-MCM-41-supported NiMoS and CoMoS catalysts, even NiMoTiM75 and CoMoTiM75 catalysts presented better performance compared to the conventional NiMo/Al2O3 and CoMo/Al2O3 catalysts in the DBT hydrodesulfurization. Ti incorporation also enhanced the selectivities to the hydrogenated products, which could be beneficial to destabilize refractory S-containing molecules.
  1. Shafiq I, Shafique S, Akhter P, Yang W, Hussain M, Catal. Rev. Sci. Eng., 1 (2020)
  2. Tanimu A, Alhooshani K, Energy Fuels, 33(4), 2810 (2019)
  3. Saleh TA, Trends Environ. Anal. Chem., 25, e00080 (2020)
  4. Garverick L, Corrosion in the petrochemical industry, ASM International, United States, 1994.
  5. Topsøe H, Clausen BS, Massoth FE, Hydrotreating catalysis: science and technology, Springer-Verlag, Germany, 1996.
  6. Matar S, Hatch LF, Chemistry of petrochemical processes, Gulf Professional Publishing, United States, pp.1 2001.
  7. Chandra-Srivastava V, RSC Adv., 2, 759 (2012)
  8. Qu L, Zhang W, Kooyman PJ, Prins R, J. Catal., 215, 7 (2003)
  9. Martinez-Edo G, Balmori A, Ponton I, Marti del Rio A, Sanchez-Garcia D, Catalysts, 8, 617 (2018)
  10. Filian H, Kohzadian A, Mohammadi M, Ghorbani-Choghamarani A, Karami A, Appl. Organomet. Chem., 34, e5579 (2020)
  11. Mendez FJ, Blanco MG, Rosas-Fernandez JB, Garcia-Macedo JA, Microporous Mesoporous Mater., 305, 110295 (2020)
  12. Nikoorazm M, Mohammadi M, Khanmoradi M, Appl. Organomet. Chem., 34, e5704 (2020)
  13. Solorzano C, Mendez FJ, Brito JL, Silva P, Anacona JR, Bastardo-Gonzalez E, J. Organomet. Chem., 908, 121073 (2020)
  14. Halachev T, de los Reyes JA, Araujo C, Dimitrov L, Cordoba G, Stud. Surf. Sci. Catal., 127, 401 (1999)
  15. Zepeda TA, Fierro JLG, Pawelec B, Nava R, Klimova TE, Fuentes GA, Halachev T, Chem. Mater., 17, 4062 (2005)
  16. Zepeda TA, Halachev T, Pawelec B, Nava R, Klimova TE, Fuentes GA, Fierro JLG, Catal. Commun., 7, 33 (2006)
  17. Zepeda TA, Pawelec B, Olivas A, Fierro JLG, Mater. Res. Innov., 11, 54 (2007)
  18. Ganiyu SA, Ali SA, Alhooshani K, Ind. Eng. Chem. Res., 56(18), 5201 (2017)
  19. Nguyen TT, Qian EW, Microporous Mesoporous Mater., 265, 1 (2018)
  20. Klimova T, Rodrı’guez E, Martı’nez M, Ramı’rez J, Microporous Mesoporous Mater., 44, 357 (2001)
  21. Wang AJ, Wang Y, Kabe T, Chen YY, Ishihara A, Qian WH, J. Catal., 199(1), 19 (2001)
  22. Wang AJ, Wang Y, Kabe T, Chen YY, Ishihara A, Qian WH, Yao PJ, J. Catal., 210(2), 319 (2002)
  23. Schacht P, Norena-Franco L, Ancheyta J, Ramirez S, Hernandez-Perez I, Garcia LA, Catal. Today, 98(1-2), 115 (2004)
  24. Silva-Rodrigo R, Calderon-Salas C, Melo-Banda JA, Dominguez JM, Vazquez-Rodriguez A, Catal. Today, 98(1-2), 123 (2004)
  25. Zepeda TA, Appl. Catal. A: Gen., 347(2), 148 (2008)
  26. Jaroszewska K, Lewandowski M, Grzechowiak JR, Szyja B, Catal. Today, 176(1), 202 (2011)
  27. Mendoza-Nieto JA, Puente-Lee I, Salcedo-Luna C, Klimova T, Fuel, 100, 100 (2012)
  28. Mendez FJ, Bastardo-Gonzalez E, Betancourt P, Paiva L, Brito JL, Catal. Lett., 143(1), 93 (2013)
  29. Mendez FJ, Llanos A, Echeverria M, Jauregui R, Villasana Y, Diaz Y, Liendo-Polanco G, Ramos-Garcia MA, Zoltan T, Brito JL, Fuel, 110, 249 (2013)
  30. Mendez FJ, Franco-Lopez OE, Bokhimi X, Solis-Casados DA, Escobar-Alarcon L, Klimova TE, Appl. Catal. B: Environ., 219, 479 (2017)
  31. Escalante Y, Mendez FJ, Diaz Y, Inojosa M, Morgado M, Delgado M, Bastardo-Gonzalez E, Brito JL, Appl. Petrochem. Res., 9, 47 (2019)
  32. Mendez FJ, Franco-Lopez OE, Diaz G, Gomez-Cortes A, Bokhimi X, Klimova TE, Fuel, 280, 118550 (2020)
  33. Mendez FJ, Bravo-Ascencion G, Gonzalez-Mota M, Puente-Lee I, Bokhimi X, Klimova TE, Catal. Today, 349, 217 (2020)
  34. Schacht P, Ramirez S, Ancheyta J, Energy Fuels, 23, 4860 (2009)
  35. Castillo LJR, Alarcon LE, Klimova TE, Top. Catal., 63, 511 (2020)
  36. Zhang P, Mu F, Zhou Y, Long Y, Wei Q, Liu X, You Q, Shan Y, Zhou W, Catal. Today (2020).
  37. Zhou W, Yang L, Liu L, Chen Z, Zhou A, Zhang Y, He X, Shi F, Zhao Z, Appl. Catal. B: Environ., 268, 118428 (2020)
  38. Escobar J, Ramirez J, Cuevas R, Angeles C, Barrera MC, Gutierrez A, Top. Catal., 63, 529 (2020)
  39. Dominguez-Garcia E, Chen J, Oliviero E, Oliviero L, Mauge F, Appl. Catal. B: Environ., 260, 117975 (2020)
  40. Marroquin G, Ancheyta J, Esteban C, Catal. Today, 104(1), 70 (2005)
  41. Farag H, Energy Fuels, 20(5), 1815 (2006)
  42. Farag H, J. Colloid Interface Sci., 348(1), 219 (2010)
  43. Alba MD, Luan ZH, Klinowski J, J. Phys. Chem., 100(6), 2178 (1996)
  44. Araujo RS, Costa FS, Maia DAS, Sant’Ana HB, Cavalcante CL, Braz. J. Chem. Eng., 24, 135 (2007)
  45. Wang S, Shi Y, Ma X, Microporous Mesoporous Mater., 156, 22 (2012)
  46. Ide M, El-Roz M, De Canck E, Vicente A, Planckaert T, Bogaerts T, et al., Phys. Chem. Chem. Phys., 15, 642 (2013)
  47. Beck JS, Vartuli JC, Roth MJ, Leonowicz ME, Kresge CT, Schmitt KD, et al., J. Am. Chem. Soc., 114, 10834 (1992)
  48. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992)
  49. Song H, Wang J, Wang ZD, Song HL, Li F, Jin ZS, J. Catal., 311, 257 (2014)
  50. Wang S, Ma C, Shi Y, Ma X, Front. Chem. Sci. Eng., 8, 95 (2014)
  51. International Center for Diffraction Data, PCPDFWIN v.2.02. PDF-2 Data Base, Newtown Philadelphia, 1995.
  52. Thommes M, Kaneko K, Neimark-Alexander V, Olivier-James P, Rodriguez-Reinoso F, Rouquerol J, Sing-Kenneth SW, Pure Appl. Chem., 87, 1051 (2015)
  53. Vachova V, Toullis D, Straka P, Simacek P, Stas M, Gdovin A, Beno Z, Blazek J, Energy Fuels, 34, 9609 (2020)
  54. Breysse M, Furimsky E, Kasztelan S, Lacroix M, Perot G, Catal. Rev. Sci. Eng., 44, 651 (2002)
  55. Bataille F, Lemberton JL, Michaud P, Perot G, Vrinat M, Lemaire M, Schulz E, Breysse M, Kasztelan S, J. Catal., 191(2), 409 (2000)
  56. Rayo P, Ramirez J, Rana MS, Ancheyta J, Aguilar-Elguezabal A, Ind. Eng. Chem. Res., 48(3), 1242 (2009)