Polymer(Korea), Vol.45, No.2, 309-313, March, 2021
바나듐 레독스 흐름 전지용 탄소-고분자 복합 분리판의 개발
Development of Carbon-Polymer Composite Bipolar Plates for Vanadium Redox Flow Battery
E-mail:
초록
팽창 흑연(expanded graphite)과 폴리(플루오르화 비닐리덴)(poly(vinylidene fluoride), PVDF)를 혼합하여 바나듐 레독스 흐름 전지(VRFB)용 분리판을 제작하였다. PVDF를 3 , 6 , 9 % 첨가하였고 제작된 분리판의 표면 분석과 5 M 황산에 대한 팽윤율 측정을 시행하였다. PVDF의 함량이 증가할수록 분리판 표면의 크랙과 팽윤율이 감소하였다. 또한 PVDF 첨가량이 6% 이상일 경우 팽윤 정도가 미미했다. 이는 소수성과 내산성을 가진 PVDF가 팽창 흑연의 갈라진 틈 사이를 채워 표면의 크랙을 감소시키고 팽윤을 억제했다고 볼 수 있다. 이 결과를 토대로 6% PVDF가 첨가된 분리판에 대하여 표면 분석, 바나듐 투과도 측정, 내식성 평가, 관통 저항 측정을 수행하였다. PVDF가 첨가된 분리판에 대하여 더 고른 표면이 관찰되었으며 바나듐 투과도가 5배 감소하였다. 또한 팽창 흑연분리판 대비 향상된 내식성을 나타냈다. PVDF의 첨가로 인해 관통 저항은 소폭 증가하였다. 위의 결과를 고려하였을 때 팽창 흑연-PVDF 복합 분리판은 VRFB에의 적용이 적합할 것으로 판단된다.
Composite bipolar plates for vanadium redox flow battery (VRFB) were fabricated with the expanded graphite and poly(vinylidene fluoride) (PVDF). Swelling in the 5 M sulfuric acid and surface morphology of the bipolar plates were measured for the PVDF content of 3, 6, and 9%. Swelling ratio and cracks on the surface of the bipolar plates decreased with increase of the PVDF content. Swelling ratio was negligible when PVDF content is over 6%. It is because the hydrophobic and acid resistant PVDF was introduced into porous expanded graphite matrix. Based on this result, vanadium permeability test, corrosion test, through-plane resistance measurement were conducted for the bipolar plate with 6% PVDF. Smooth surface and 5 times reduced vanadium permeability was observed for the PVDF added bipolar plate. And it showed enhanced corrosion resistance and slight increase for through-pane resistance. As these results, it is considered that this composite bipolar plate is suitable for VRFB.
Keywords:composite bipolar plates;expanded graphite;poly(vinylidene fluoride);vanadium redox flow battery
- Jiang HR, Sun J, Wei L, Wu MC, Shyy W, Zhao TS, Energy Stor. Mater., 24, 529 (2020)
- Antoni FC, Fikile RB, Curr Opin Electrochem., 18, 113 (2019)
- Kim JM, Park HS, Renew. Energy, 18, 284 (2019)
- Liao WN, Jiang FJ, Zhang Y, Zhou XJ, He ZQ, Renew. Energy, 152, 1310 (2020)
- Leung P, Li X, Ponce C, Berlouis L, John T, Walsh F, RSC Adv., 2, 10125 (2012)
- Yu HN, Lim JW, Suh JD, Lee DG, J. Power Sources, 196(23), 9868 (2011)
- Sukkar T, Skyllas-Kazacos M, J. Appl. Electrochem., 34(2), 137 (2004)
- Lee DY, Lee DG, Lim JW, J. Intell. Mater. Syst. Struct., 29, 3386 (2017)
- Thomas YRJ, Bruno MM, Corti HR, Microporous Mesoporous Mater., 155, 47 (2012)
- Liao W, Zhang Y, Zhou X, Zhuang M, Guo D, Jiang F, Yu Q, ChemistrySelect, 4, 2421 (2019)
- Liu H, Yang L, Xu Q, Yan C, RSC Adv., 5, 5928 (2015)
- Zhang J, Zhou T, Xia L, Yuan C, Zhang W, Zhang A, J. Mater. Chem. A, 3, 2387 (2015)
- Gao PP, Xie ZY, Wu XB, Ouyang C, Lei T, Yang PP, Liu CB, Wang JB, Ouyang T, Huang QZ, Int. J. Hydrog. Energy, 43(45), 20947 (2018)
- Shen A, Zou Y, Wang Q, Dryfe RW, Huang X, Dou S, Dai L, Wang S, Angew. Chem.-Int. Edit., 53, 10804 (2014)
- Noh TH, Kim MY, Kim DH, Yang SH, Lee JH, Park HS, Noh HS, Lee MS, Kim HS, Electrochem. Sci. Technol., 8, 146 (2017)
- Qian P, Zhang H, Chen J, Wen Y, Luo Q, Liu Z, You D, Yi B, J. Power Sources, 175(1), 613 (2008)