화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.96, 163-168, April, 2021
Extracting internal modes of top emission organic light emitting diodes by using internal random mesoscopic wrinkles
E-mail:,
Angular electroluminescence spectra stabilized and efficiency enhanced top-emitting organic lightemitting devices (TOLEDs) were demonstrated using randomly distributed mesoscopic internal wrinkles. Compared to planar TOLEDs, wrinkled TOLEDs showed a faster exciton decay rate in the emissive layer and high rate of radiative recombination, which leads to enhanced efficiency. Our wrinkled TOLEDs showed angular spectral dependency (u0v0(θ)) of 0.0032, which is low enough to be imperceptible to the human eyes, and 38.7 % enhanced external quantum efficiency relative to the planar counterpart. The approach described here provides an effective scheme for improving TOLEDs and obviating the necessity of modifying the stack structure of the device.
  1. Tang CW, Van Slyke SA, Appl. Phys. Lett., 51, 913 (1987)
  2. Kido J, Kimura M, Nagai K, Science, 267(5202), 1332 (1995)
  3. Hofmann S, Thomschke M, Lussem B, Leo K, Opt. Exp., 19, 1250 (2011)
  4. Huh JW, Moon J, Won JW, Cho DH, Shin JW, Han JH, et al., Org. Electron., 13, 1386 (2012)
  5. Park JY, Proc. SPIE, 5632, 17 (2005)
  6. Joo CW, Lee K, Lee J, Cho H, Shin JW, Cho NS, Moon J, J. Lumines., 187, 433 (2017)
  7. Schwab T, Fuchs C, Scholz R, Li XH, Xie F, Choy W, Leo K, Gather M, Proc. SPIE, 8829 (2013)
  8. Gather MC, Sebastian R, J. Photon. Energy, 5 (2015)
  9. Kim SY, Jeong WI, Mayr C, Park YS, Kim KH, Lee JH, Moon CK, Brutting W, Kim JJ, Adv. Funct. Mater., 19, 3896 (2013)
  10. Huh JW, Shin JW, Cho DH, Moon J, Joo CW, Park SK, Hwang J, Cho NS, Lee J, Han JH, Chu HY, Lee JI, Nanoscale, 6, 10727 (2014)
  11. Gifford DK, Hall DG, Appl. Phys. Lett., 80, 3679 (2002)
  12. Vuckovic J, Loncar M, Scherer A, IEEE J. Quantum Electron., 36, 1131 (2000)
  13. Meerheim R, Mauro M, Hofmann S, Lussem B, Leo K, Appl. Phys. Lett., 97, 253305 (2010)
  14. Riel H, Karg S, Beierlein T, Rieβ W, J. Appl. Phys., 94, 5290 (2003)
  15. Hobson PA, Wedge S, Wasey JAE, Sage I, Barnes WL, Adv. Mater., 14(19), 1393 (2002)
  16. Schwab T, Fuchs C, Scholz R, Zakhidov A, Leo K, Gather MC, Opt. Exp., 22, 7524 (2014)
  17. Liang H, Hsu HC, Wu J, He X, Wei M, Chiu TL, Lin CF, Lee JH, Wang J, Opt. Exp., 27, A (372)
  18. Kim D, Woo K, Han JH, Lee TW, Lee HS, Cho YH, Choi KC, ACS Photon., 5, 4061 (2018)
  19. Park SK, Kwark YJ, Moon J, Joo CW, Yu BG, Lee JI, Marcmol. Rapid Commun., 36, 2006 (2015)
  20. Neal TD, Okamoto K, Scherer A, Liu MS, Jen A, Appl. Phys. Lett., 89, 221106 (2006)
  21. Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM, Nature, 393(6681), 146 (1998)
  22. Wang Q, Deng Z, Ma D, Appl. Phys. Lett., 94, 233306 (2009)
  23. Forrest SR, Bradley DDC, Thompson ME, Adv. Mater., 15(13), 1043 (2003)
  24. Kim E, Chung J, Lee J, Cho H, Cho NS, Yoo S, Org. Electron., 48, 348 (2017)
  25. Cho HS, Song JO, Kwon BH, Choi SY, Lee HK, Joo CW, Ahn SD, Kang SY, Yoo SH, Moon JH, J. Ind. Eng. Chem., 69, 414 (2019)
  26. Komoda T, Tsuji H, Yamae K, Varutt K, Matsuhisa Y, Ide N, Soc. Info. Disp. Digest., 42, 1056 (2011)
  27. Murata H, Sandanayaka SDA, Soc. Info. Disp. Digest., 45, 32 (2014)
  28. Reineke S, Walzer K, Leo K, Phys. Rev. B, 75, 125328 (2007)
  29. Sandanayaka A, Matsushima T, Adachi C, J. Phys. Chem. C, 119, 23845 (2015)
  30. Gontijo I, Boroditsky M, Yablonovitch E, Keller S, Mishra U, DenBaars S, Phys. Rev. B, 60, 11564 (1999)