Journal of Industrial and Engineering Chemistry, Vol.96, 315-321, April, 2021
Physico-electrochemical properties and long-term stability of Mn1.45-0.5xCo1.45-0.5xCuxY0.1O4 spinel protective coatings on commercial metallic interconnects for solid oxide fuel cells
E-mail:
The application of ceramic coatings has been presented as an effective method to suppress the oxidation scale growth and Cr evaporation of ferritic stainless steels used in solid oxide fuel cell (SOFC) interconnects. In this work, Mn1.45-0.5xCo1.45-0.5xCuxY0.1O4 materials with various Cu contents (x = 0.1, 0.3, and 0.5) were synthesized through a facile glycine nitrate process as a protective coating on a metallic interconnect (SUS 441). It was observed that the lattice parameter decreased from 8.31 A (x = 0.1) to 8.22 A (x = 0.5) with increasing Cu content (x). The effects of Cu content (x) on the phase stability as well as sintering, electrical, and thermal expansion were investigated. The results confirmed that the Mn1.3Co1.3Cu0.3Y0.1O4 spinel had the highest electrical conductivity of 115 S cm-1 at 800 °C and an average thermal expansion value of 11.98
x 10-6 K-1 in the temperature range of 20.1000 °C. The ASR of Mn1.3Co1.3Cu0.3Y0.1O4 coated SUS441 (7.7 x 10-5Ω-cm2 at 800 °C) was 3 orders of magnitude lower than that of the uncoated sample. Moreover, the Mn1.3Co1.3Cu0.3Y0.1O4 coated interconnect exhibited excellent long-term stability up to 1000 h at 800 °C without any observable degradation, while the ASR of the uncoated sample increased by >850% for 1000 h (from 0.001 Ω-cm2 to 0.06 Ω-cm2) under the same conditions. The oxidation kinetics obeying the parabolic law with a rate constant of Mn1.3Co1.3Cu0.3Y0.1O4 (1.64 x 10-9mΩ-2cm-4 s-1) was 4 orders of magnitude lower than that of bare SUS 411 (7.4 x 10-5mΩ-2cm-4 s-1) at 750 °C for 2000 h. These results demonstrate that the Mn1.3Co1.3Cu0.3Y0.1O4 is a promising coating material with high electrical conductivity and excellent durability for metallic interconnects of intermediate-temperature SOFCs.
Keywords:Solid oxide fuel cells;Interconnect;Spinel coating layer;Oxidation resistance;Long-term stability
- Wachsman ED, Lee KT, Science, 334(6058), 935 (2011)
- Shaigan N, Qu W, Ivey DG, Chen WX, J. Power Sources, 195(6), 1529 (2010)
- Wu J, Liu X, J. Mater. Sci. Technol., 26, 293 (2010)
- Otitoju TA, Okoye PU, Chen G, Li Y, Okoye MO, Li S, J. Ind. Eng. Chem., 85, 34 (2020)
- Jiang SP, Chen XB, Int. J. Hydrog. Energy, 39(1), 505 (2014)
- Hu YZ, Li CX, Yang GJ, Li CJ, Int. J. Hydrog. Energy, 39(25), 13844 (2014)
- Shen F, Lu K, ACS Appl. Mater. Interfaces, 9, 6022 (2017)
- Wang RF, Sun ZH, Pal UB, Gopalan S, Basu SN, J. Power Sources, 376, 100 (2018)
- Yang SR, Kim SK, Jung DH, Kim TJ, Kim HS, Peck DH, J. Ind. Eng. Chem., 66, 100 (2018)
- Brylewski T, Kruk A, Bobruk M, Adamczyk A, Partyka J, Rutkowski P, J. Power Sources, 333, 145 (2016)
- Thaheem I, Joh DW, Noh T, Lee KT, Int. J. Hydrog. Energy, 44(8), 4293 (2019)
- Jalilvand G, Faghihi-Sani MA, Int. J. Hydrog. Energy, 38(27), 12007 (2013)
- Zhao H, Fang K, Dong F, Lin M, Sun Y, Tang Z, J. Ind. Eng. Chem., 54, 117 (2017)
- Xu YJ, Wen ZY, Wang SR, Wen TL, Solid State Ion., 192(1), 561 (2011)
- Abu-Zied BM, Obalova L, Pacultova K, Klegova A, Asiri AM, J. Ind. Eng. Chem., 93, 279 (2021)
- Abu-Zied BM, Soliman SA, Abdellah SE, J. Ind. Eng. Chem., 21, 814 (2015)
- Xin XS, Wang SR, Qian JQ, Lin CC, Zhan ZL, Wen TL, Int. J. Hydrog. Energy, 37(1), 471 (2012)
- Kumar GR, Kumar KV, Venudhar YC, Mater. Sci. Appl., 03, 87 (2012)
- Kester E, Gillot B, Perriat P, Dufour P, J. Solid State Chem., 126, 7 (1996)
- Kim KJ, Rath MK, Kwak HH, Kim HJ, Han JW, Hong ST, Lee KT, ACS Catal., 9, 1172 (2019)
- Lazarraga MG, Pascual L, Gadjov H, Kovacheva D, Petrov K, Amarilla JM, Rojas RM, Martin-Luengo MA, Rojo JM, J. Mater. Chem., 14, 1640 (2004)
- Barai HR, Banerjee AN, Hamnabard N, Joo SW, RSC Adv., 6, 78887 (2016)
- Zhan S, Zhu D, Qiu M, Yu H, Li Y, RSC Adv., 5, 29353 (2015)
- Wu CB, Guo JY, Zhang JF, Zhao YC, Tian JN, Isimjan TT, Yang XL, Renew. Energy, 136, 1064 (2019)
- Abu-Zied BM, Obalova L, Pacultova K, Klegova A, Asiri AM, J. Ind. Eng. Chem., 93, 279 (2021)
- Wang Y, Lany S, Ghanbaja J, Fagot-Revurat Y, Chen YP, Soldera F, Horwat D, Mucklich F, Pierson JF, Phys. Rev. B, 94 (2016)
- Sharma R, Komal, Kumar V, Bansal S, Singhal S, Mater. Res. Bull., 90, 94 (2017)
- Wei YJ, Kim KB, Chen G, Electrochim. Acta, 51(16), 3365 (2006)
- Venkatachalam V, Alsalme A, Alghamdi A, Jayavel R, J. Electroanal. Chem., 756, 94 (2015)
- Kipphut C, German R, Minerals Metals Materials SOC 420 Commonwealth DR, Warren dale, PA 15086 (1988).
- Lawson S, Gill C, Dransfield GP, J. Mater. Sci., 30(12), 3057 (1995)
- Bautista A, Velasco F, Abenojar J, Corrosion Sci., 45, 1343 (2003)
- Park BK, Lee JW, Lee SB, Lim TH, Park SJ, Park CO, Song RH, Int. J. Hydrog. Energy, 38(27), 12043 (2013)
- Legros R, Metz R, Rousset A, J. European Ceram. Soc., 15, 463 (1995)
- Yao CG, Meng JL, Liu XJ, Zhang X, Meng FZ, Wu XJ, Meng J, Electrochim. Acta, 229, 429 (2017)
- Zhang H, Zeng C, J. Power Sources, 252, 122 (2014)
- Yang ZG, Xia GG, Nie ZM, Templeton J, Stevenson JW, Electrochem. Solid State Lett., 11(8), B140 (2008)
- Chen GY, Xin XS, Luo T, Liu LM, Zhou YC, Yuan C, Lin CC, Zhan ZL, Wang SR, J. Power Sources, 278, 230 (2015)
- Qu W, Jian L, Ivey DG, Hill JM, J. Power Sources, 157(1), 335 (2006)