화학공학소재연구정보센터
Advanced Powder Technology, Vol.32, No.2, 283-289, 2021
Evaluation and control of the adhesiveness of cohesive calcium carbonate particles at high temperatures
Understanding the adhesiveness of fine particulate materials at high temperatures is important to achieving the stable, economical operation of various industrial systems. In the present research, two types of calcium carbonate (CaCO3 ) particles having different mean particle sizes (often used as heat carriers in energy systems) were evaluated. The tensile strengths of beds of these materials were determined at various temperatures by tensile strength measurement tester. The adhesiveness was found to increase greatly at 500 degrees C even without chemical reactions or sintering, and X-ray diffraction analyses showed thermal expansion of the CaCO3 crystals at 500 degrees C. Pure alumina (Al2O3) and silica (SiO2) microparticles did not exhibit the same pronounced increases in tensile strength or crystal expansion at this same temperature. Because the surface distances between these primary particles were presumably small, it is proposed that van der Waals forces between the particles greatly increased at high temperatures. The addition of Al2O3 nanoparticles to the CaCO3 decreased the tensile strengths of the powder beds both at ambient temperature and at 500 degrees C. The experimental data confirm that the surface distances between primary particles were increased upon incorporating the nanoparticles, such that the tensile strength decreased during heat treatment. (c) 2020 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).