Advanced Powder Technology, Vol.32, No.1, 144-150, 2021
Rapid preparation and photocatalytic properties of octahedral Cu2O@Cu powders
To improve the photocatalytic properties of Cu2O, octahedral Cu2O@Cu powders were prepared by a convenient and rapid two-step liquid phase reduction method. Glucose (C6H12O6) and thiourea dioxide (CH4N2O2S, TD for short) were used as pre-reductant and secondary-reductant separately. The microstructure and composition of the products obtained after the reduction processes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). With the increasing of TD content, the secondary reduced products changed from solid octahedral Cu2O to octahedral Cu2O@Cu composites and finally hollow octahedral Cu2O/Cu composites. The corresponding calculated mass of Cu increased from 6.2 wt% to 80.2 wt%. The photocatalytic behavior of the reduced particles were analyzed by monitoring the degradation of methyl orange solution (MO for short) and electrochemical tests. Photocatalytic performance tests showed that octahedral Cu2O@Cu powders had an excellent photocatalytic activity. The MO degradation rate was improved from 1.4% for photocatalysts without CuNPs to 92.9% after introducing 13.4 wt % CuNPs under visible light irradiation for 60 min. This simple and rapid synthesis process allowed for the fabrication of octahedral Cu2O@Cu material with photocatalytic performance superior to pure octahedral Cu2O and hollow octahedral Cu2O/Cu materials. (c) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.