Advanced Powder Technology, Vol.31, No.9, 3824-3832, 2020
Preparation and characterization of nanoboron by cryo-milling
Cryo-milling of coarse micron grade elemental boron powder was investigated for possible generation of nanosized boron powder. Process parameters were optimized for the least contamination and least particle size. The as-milled powders were characterized by scanning and transmission electron microscopy (SEM/TEM) and x-ray diffraction (XRD) for powder morphology, average particle size, and phase analysis. The particle size and surface area were also estimated using dynamic laser scattering (DLS) and BET techniques to correlate with the performance of the material. Thermo-gravimetric and differential thermal analysis (TG-DTA) studies were performed to ascertain mass change and energy release in unmilled and milled powder. The average particle size of boron powder after 9 h of cryo-milling was < 100 nm. The cryo-milled powder was made air-stable and dispersible in JP10 fuel by coating it with ligand through the mechanical milling method. The TOPO (tri-n-octyl phosphine oxide) coated nano boron powder exhibited dispersion stability for a week. (C) 2020 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.