화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.193, No.3, 856-868, 2021
Lipid Accumulation by Xylose Metabolism Engineered Mucor circinelloides Strains on Corn Straw Hydrolysate
Previously, we presented a novel approach for increasing the consumption of xylose and the lipid yield by overexpressing the genes coding for xylose isomerase (XI) and xylulokinase (XK) in Mucor circinelloides. In the present study, an in-depth analysis of lipid accumulation by xylose metabolism engineered M. circinelloides strains (namely Mc-XI and Mc-XK) using corn straw hydrolysate was to be explored. The results showed that the fatty acid contents of the engineered M. circinelloides strains were, respectively, increased by 19.8% (in Mc-XI) and 22.3% (in Mc-XK) when compared with the control strain, even though a slightly decreased biomass in these engineered strains was detected. Moreover, the xylose uptake rates of engineered strains in the corn straw hydrolysate were improved significantly by 71.5% (in Mc-XI) and 68.8% (in Mc-XK), respectively, when compared with the control strain. Maybe the increased utilization of xylose led to an increase in lipid synthesis. When the recombinant M. circinelloides strains were cultured in corn straw hydrolysate medium with the carbon-to-nitrogen ratio (C/N ratio) of 50 and initial pH of 6.0, at 30 degrees C and 500 rpm for 144 h, a total biomass of 12.6-12.9 g/L with a lipid content of 17.2-17.7% (corresponding to a lipid yield of 2.17-2.28 g/L) was achieved. Our study provides a foundation for the further application of the engineered M. circinelloides strains to produce lipid from lignocelluloses.