Applied Microbiology and Biotechnology, Vol.104, No.14, 6261-6272, 2020
Genome-wide study of saprotrophy-related genes in the basal fungus Conidiobolus heterosporus
Conidiobolus spp. are important saprophytic basal fungi. However, to date, no genomic-level data for decaying plant materials in the genus Conidiobolus has been reported. Here, we report that the 33.4-Mb genome of Conidiobolus heterosporus encodes 10,857 predicted genes. Conidiobolus heterosporus harbors 394 CAZyme-encoding genes belonging to 4 major modules but does not encode a polysaccharide lyase (PL). Many carbohydrate esterases (CEs) belonging to the family CE12 play crucial roles as pectin acetylesterases, and 14 genes were upregulated in the IM (fungus grown on inducing medium) among 17 expressed CE12 family genes. In addition, most of the genes in the GH132 CAZyme family showed a greater than 5-fold increase in expression in the IM compared with that in the wild type. Furthermore, 122 P450-encoding genes grouped into 11 families were detected in the fungal genome, most of which belonged to the CYP547 family (36 genes) followed by CYP548 (27 genes) and CYP5856 (25 genes). Interestingly, members of the families CYP5014 and CYP5136 were identified, the first time such enzymes have been described in a fungus. Our findings provide new insights into the genomics and genomic features of the saprophytic basal fungus C. heterosporus.