화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.534, 193-198, 2021
Opsonization of multiple drug resistant (MDR)-bacteria by antimicrobial peptide fused hepatitis B virus surface antigen (HBsAg) in vaccinated individuals
Vaccination evoking immunity in susceptible individuals has become the most effective solution to combat infectious diseases. The surface antigen of hepatitis B virus (HBsAg) is a mandatory vaccine for children in China. Herein, we designed an antimicrobial protein consisting of an antimicrobial peptide Thanatin at the N-terminus fused with the HBsAg at the C-terminus. The expressed Thanatin-GFP-HBsAg (TGH) quantitively bound with the anti-HBsAg antibody by ELISA, and after exposure to TGH, Gram-negative E. coli cells became fluorescencent indicating the binding of TGH with the bacterial cells. We also demonstrated that TGH could intercalated into the lipid bilayer as shown by the quartz crystal microbalance with dissipation (QCM-D) and TEM. Moreover, the TGH bound E. coli cells attracted anti-HBsAg IgG as shown by the experiments that in turn treated the E. coli cells with TGF, anti-HBsAg serum and PE labelled goat anti-mouse IgG antibodies. After supplementation with serum from HBsAg vaccinated individuals, TGH showed improved bactericidal effect in vitro. In vivo experiments showed that the mice receiving TGH vaccination show quicker clearance of MDR E. coli pretreated with TGH and better survive in comparison with groups treated with piperacillin plus subatan. In addition, anti-HBsAg serum supplementation also improved the endocytosis of TGH decorated bacteria by leukocytes. This study reported a novel solution to combat infectious pathogens based on the membrane penetrating effect of antimicrobial peptides. (C) 2020 Elsevier Inc. All rights reserved.