화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.534, 871-876, 2021
Estrogen promotes increased breast cancer cell proliferation and migration through downregulation of CPEB1 expression
The polyadenylation element binding protein 1 (CPEB1) plays an important role in the regulation of poly(A) tail length at the 3'UTR of mRNA during transcription. Downregulation of CPEB1 expression, which is associated with the loss of mammary epithelial polarity, has been reported in breast cancer. CPEB1 downregulation leads to an increase in tumor aggressiveness of breast cancer. Breast cancer is also known to be responsive to the treatment with steroid hormones, which promotes cancer development and progression; however, the nature of these associations remains unclear. This study aimed to investigate whether estrogen and progesterone impacted CPEB1 expression in breast cancer in order to regulate cell proliferation and migration. MCF7 cell proliferation was increased in response to estrogen treatment, and estrogen application suppressed the expression of CPEB1 mRNA. Cells treated with estrogen or those depleted for CPEB1 by shRNA showed increased wound healing capacity compared with that of control cells in migration assay. Moreover, we found that CPEB1 level of expression in human breast cancer tissue was low compared with that in the healthy tissue. CPEB1 expression was downregulated in response to estrogen activity and in turn, that caused a significantly induced cell migration in breast cancer cells. This suggests that CPEB1 is one of the estrogen responsive genes, which stimulates breast cancer progression. Increasing and/or maintaining CPEB1 expression level has the potential to control breast cancer behavior. (C) 2020 Elsevier Inc. All rights reserved.