화학공학소재연구정보센터
Biomacromolecules, Vol.22, No.1, 201-212, 2021
Squid Beak Inspired Cross-Linked Cellulose Nanocrystal Composites
Bioinspired cross-linked polymer nanocomposites that mimic the water-enhanced mechanical gradient properties of the squid beak have been prepared by embedding either carboxylic acid- or allyl-functionalized cellulose nanocrystals (CNC) into an alkene-containing polymer matrix (poly(vinyl acetate-co-vinyl pentenoate), P(VAc-co-VP)). Cross-linking is achieved by imbibing the composite with a tetrathiol cross-linker and carrying out a photoinduced thiol-ene reaction. Central to this study was an investigation on how the placement of cross-links (i.e., within matrix only or between the matrix and filler) impacts the wet mechanical properties of these materials. Through cross-linking both the CNCs and matrix, it is possible to access larger wet mechanical contrasts (E-stiff'/E-soft' = ca. 20) than can be obtained by just cross-linking the matrix alone (where contrast E-stiff'/E-soft' of up 11 are observed). For example, in nanocomposites fabricated with 15 wt % of allyl-functionalized tunicate CNCs and P(VAc-co-VP) with about 30 mol % of the alkene-containing VP units, an increase in the modulus of the wet composite from about 14 MPa to about 289 MPa at physiological temperature (37 degrees C) can be observed after UV irradiation. The water swelling of the nanocomposites is greatly reduced in the cross-linked materials as a result of the thiol-ene cross-linking network, which also contributes to the wet modulus increase. Given the mechanical turnability and the relatively simple approach that also allows photopatterning the material properties, these water-activated bioinspired nanocomposites have potential uses in a broad range of biomedical applications, such as mechanically compliant intracortical microelectrodes.