Biomacromolecules, Vol.21, No.10, 4212-4219, 2020
Engineering Nonmechanical Protein-Based Hydrogels with Highly Mechanical Properties: Comparison with Natural Muscles
The elegant elasticity and toughness of muscles that are controlled by myofilament sliding, highly elastic springlike properties of titin, and Ca2+-induced conformational change of the troponin complex have been a source of inspiration to develop advanced materials for simulating elastic muscle motion. Herein, a highly stretchable protein hydrogel is developed to mimic the structure and motion of muscles through the combination of protein folding-unfolding and molecular sliding. It has been shown that the protein bovine serum albumin is covalently cross-linked, together penetrated with alginate chains to construct polyprotein-based hydrogels, where polyproteins can act as the elastic spring titin via protein folding-unfolding and also achieve tunable sliding facilitated by alginate due to their reversible noncovalent interactions, thus providing desired mechanical properties such as stretchability, resilience, and strength. Notably, these biomaterials can achieve the breaking strain of up to 1200% and show massive energy dissipation. A pronounced expansion-contraction phenomenon is also observed on the macroscopic scale, and the Ca2+-induced contraction process may help to improve our understanding of muscle movement. Overall, these excellent properties are comparable to or even better than those of natural muscles, making the polyprotein-based hydrogels represent a new type of muscle-mimetic biomaterial. Significantly, the prominent biocompatibility of the designed biomaterials further enables them to hold potential applications in the biomedical field and tissue engineering.