화학공학소재연구정보센터
Biomacromolecules, Vol.21, No.9, 3736-3744, 2020
Multi-Arm Star-Shaped Glycopolymers with Precisely Controlled Core Size and Arm Length
Star-shaped glycopolymers provide very high binding activities toward lectins. However, a straightforward synthesis method for the preparation of multi-arm glycopolymers in a one-pot approach has been challenging. Herein, we report a rapid synthesis of well-defined multi-arm glycopolymers via Cu(0)-mediated reversible deactivation radical polymerization in aqueous media. D-Mannose acrylamide has been homo- and copolymerized with NIPAM to provide linear arms and then core cross-linked with a bisacrylamide monomer. Thus, the arm length and core size of multi-arm glycopolymers were tuned. Moreover, the stability of multi-arm glycopolymers was investigated, and degradation reactions under acidic or basic conditions were observed. The binding activities of the obtained multi-arm glycopolymers with mannose-specific human lectins, DC-SIGN and MBL, were investigated via surface plasmon resonance spectroscopy. Finally, the encapsulation ability of multi-arm glycopolymers was examined using DHA and Saquinavir below and above the lower critical solution temperature (LCST) of P(NIPAM).