화학공학소재연구정보센터
Chemical Engineering & Technology, Vol.43, No.9, 1774-1783, 2020
Desulfurization and Denitrogenation Processes to Treat Diesel Using Mo(VI)-Bipyridine Catalysts
High efficiency was found for desulfurization and denitrogenation processes to treat diesel using either the hybrid material {[MoO3(2,2 '-bipy)][MoO3(H2O)]}(n)or the octanuclear complex [Mo8O22(OH)(4)(di-tBu-bipy)(4)] (2,2 '-bipy = 2,2 '-bipyridine, di-tBu-bipy = 4,4 '-di-tert-butyl-2,2 '-bipyridine) as catalysts. These processes were employed in a single procedure to simultaneously remove sulfur (dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyldibenzothiophene) and nitrogen (indole and quinoline) compounds from diesel. A reaction time of two hours was sufficient to achieve at least 99.9 % S removal and 97 % N removal. Furthermore, the catalytic systems presented a high capacity to be reused/recycled for consecutive desulfurization/denitrogenation cycles.