Chinese Journal of Chemical Engineering, Vol.28, No.9, 2256-2266, 2020
Simultaneous preparation of TiO2 and ammonium alum, and microporous SiO2 during the mineral carbonation of titanium-bearing blast furnace slag
In this study, a route for simultaneous mineralization of CO2 and production of titanium dioxide and ammonium alum, and microporous silicon dioxide from titanium-bearing blast furnace slag (TBBF slag) was proposed, which is comprised of (NH4)(2)SO4 roasting, add leaching, ammonium alum crystallization, silicic acid flocculation and Ti hydrolysis. The effects of relevant process parameters were systematically investigated. The results showed that under the optimal roasting and leaching conditions about 85% of titanium and 84.6% of aluminum could be extracted while only 30% of silicon entered the leachate. 84% of Al3+ was crystallized from the leachate in the form of ammonium aluminum sulfate dodecahydrate with a purity up to 99.5 wt%. About 85% of the soluble silicic acid was flocculated with the aid of secondary alcohol polyoxyethylene ether 9 (AEO-9) to yield a microporous SiO2 material (97.4 wt%) from the crystallized mother liquor. The Al- and Si-depleted solution was then hydrolyzed to generate a titanium dioxide (99.1 wt%) with uniform particle size distribution. It was figured out that approximately 146 kg TiO2 could be produced from 1000 kg of TBBF slag. Therefore, the improved process is a promising method for industrial application. (C) 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.
Keywords:CO2 mineralization;Titanium-bearing blast furnace slag;Ammonium sulfate;Flocculation;Titanium dioxide