화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.4, 704-715, April, 2021
Effect of alumina nanoparticle shape in a triangular porous array of heated periodic pin-fins
E-mail:
Forced convective flow of alumina-water nanofluid with different shapes of nanoparticles through pin-fins of circular cross-section aligned in an equilateral triangular array was analyzed using finite volume methodology. The effect of the shape of alumina nanoparticles on heat transfer across the periodic equilateral triangular array has never been studied in the past. Four different shapes of nanoparticles were considered: spherical, cylindrical, bricks, and platelets. Using non-spherical (cylindrical, bricks, and platelets) nanoparticles resulted in a thinning thermal boundary layer, which resulted in a significant enhancement in heat transfer rates across the array. The mean Nusselt number was augmented by 22% when platelet shaped nanoparticles were utilized in place of spherical shaped nanoparticles. Likewise, the mean Nusselt number was augmented by 17% when cylindrical nanoparticles were used, in place of spherical nanoparticles, at the highest values of other parameters. The increment in effective viscosity of the nanofluid was the highest for platelet-shaped nanoparticles, which resulted in a greater pressure drop compared to other shapes of nanoparticles such as cylindrical, bricks, and spherical for all values of particle concentration. The results in the present article are validated extensively with accessible experimental and numerical studies.
  1. Mandhani VK, Chhabra RP, Eswaran V, Chem. Eng. Sci., 57(3), 379 (2002)
  2. Eidsath A, Carbonell RG, Whitakar S, Herrmann LR, Chem. Eng. Sci., 38, 1803 (1983)
  3. Martin AR, Saltiel C, Shyy W, Int. J. Heat Mass Transf., 41, 2383 (1998)
  4. Wang CY, Appl. Math. Model., 23, 219 (1999)
  5. Mughal W, Xin CL, Zhang Y, Samo I, Abro M, He YD, Chem. Eng. Res. Des., 151, 231 (2019)
  6. Rubio-Jimenez CA, Kandlikar SG, Hernandez-Guerrero A, IEEE Trans. Components, Packag. Manuf. Technol., 2, 825 (2012).
  7. Ndao S, Peles Y, Jensen MK, Int. J. Heat Mass Transf., 70, 856 (2014)
  8. Saha AK, Chanda S, Int. J. Therm. Sci., 137, 325 (2019)
  9. Nguyen CT, Roy G, Gauthier C, Galanis N, Appl. Therm. Eng., 27, 1501 (2007)
  10. Ram RP, Bharti RP, Dhiman AK, Can. J. Chem. Eng., 94(7), 1381 (2016)
  11. Asif M, Dhiman A, J. Brazilian Soc. Mech. Sci. Eng., 40, 1 (2018)
  12. Wung TS, Chen CJ, J. Heat Transfer, 111, 633 (1989)
  13. Chen CJ, Wung TS, J. Heat Transfer, 111, 641 (1989)
  14. Zkauskas A, Adv. Heat Transf., 18, 87 (1987)
  15. Vijaybabu TR, Int. J. Mech. Sci., 166, 105240 (2019)
  16. Sheikholeslami M, Rizwan-ul Haq, Shafee A, Li ZX, Elaraki YG, Tlili I, Int. J. Heat Mass Transf., 135, 470 (2019)
  17. Pordanjani AH, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S, Energy Conv. Manag., 198, 111886 (2019)
  18. Sheikholeslami M, Sadoughi MK, Int. J. Heat Mass Transf., 116, 909 (2018)
  19. Sheikholeslami M, Phys. Lett. Sect. A Gen. At. Solid State Phys., 381, 494 (2017).
  20. Mikhailenko SA, Sheremet MA, Oztop HF, Abu-Hamdeh N, Int. J. Mech. Sci., 156, 137 (2019)
  21. Selimefendigil F, Oztop HF, Int. J. Mech. Sci., 157, 726 (2019)
  22. Bouzerzour A, Djezzar M, Oztop HF, Tayebi T, Abu-Hamdeh N, Phys. A Stat. Mech. its Appl., 538, 122479 (2019)
  23. Asif M, Chaturvedi R, Dhiman A, J. Therm Sci. Eng. Appl., 13, 041025 (2021)
  24. Sheikholeslami M, Farshad SA, Powder Technol., 378, 145 (2021)
  25. Selvakumar RD, Dhinakaran S, Int. J. Heat Mass Transf., 106, 816 (2017)
  26. Lavasani AM, Bayat H, Energy Conv. Manag., 129, 319 (2016)
  27. Brinkman HC, J. Chem. Phys., 20, 571 (1952)
  28. Maxwell JC, A treatise on electricity and magnetism, Oxford, England (1873).
  29. Nguyen TK, Saidizad A, Jafaryar M, Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li ZX, Chem. Eng. Res. Des., 146, 478 (2019)
  30. Ellahi R, Hassan M, Zeeshan A, Int. J. Heat Mass Transf., 81, 449 (2015)
  31. Vanaki SM, Mohammed HA, Abdollahi A, Wahid MA, J. Mol. Liq., 196, 32 (2014)
  32. Pravesh R, Dhiman A, Bharti RP, Int. J. Heat Mass Transf., 130, 1141 (2019)
  33. Mangrulkar CK, Dhoble AS, Chamoli S, Gupta A, Gawande VB, Renew. Sust. Energ. Rev., 113, 109220 (2019)
  34. Buongiorno J, J. Heat Transfer, 128, 240 (2006)
  35. Corcione M, Energy Conv. Manag., 52(1), 789 (2011)
  36. Timofeeva EV, Routbort JL, Singh D, J. Appl. Phys., 106, 014304 (2009)
  37. Lange CF, Durst F, Breuer M, Int. J. Heat Mass Transf., 41(22), 3409 (1998)
  38. Maji NC, Chakraborty J, Int. J. Heat Mass Transf., 156, 119709 (2020)
  39. Ambreen T, Saleem A, Park CW, Appl. Therm. Eng., 158, 113781 (2019)
  40. Murshed SMS, Estelle P, Renew. Sust. Energ. Rev., 76, 1134 (2017)