화학공학소재연구정보센터
Clean Technology, Vol.27, No.1, 9-16, March, 2021
질소 정제 시스템의 산소 제거용 구리계 촉매 연구
A Study on Cu-based Catalysts for Oxygen Removal in Nitrogen Purification System
E-mail:
초록
Active Matrix Organic Light-Emitting Diode (AMOLED) 봉지 공정은 수분과 산소에 매우 취약하기 때문에, 수분과 산소의 함량이 최소화된 고순도의 질소를 사용하여야 한다. 본 연구의 목적은 AMOLED 봉지 공정에 사용하는 질소에서 산소를 제거하기 위한 용도로 사용되는 구리계 촉매를 최적화하는 것이다. CuO, Al2O3, 또는 ZnO의 조성으로 이루어진 2성분계 및 3성분계 촉매를 공침법을 통해서 제조하였다. 제조된 촉매들을 BET, XRD, TPR, XRF의 분석장비를 활용하여 촉매의 특성을 분석하였다. 촉매의 산소 제거 성능을 확인하기 위해 고정층 반응기에서 촉매 산소 제거 반응 실험을 수행하고 산소 분석기를 통해 산소 함량을 측정하였다. 또한 사용된 촉매의 반복 재생을 통해 촉매의 재사용 성능을 검증하였다. CuO와 Al2O3 비율이 6 : 4, 7 : 3 및 8 : 2로 제조된 2 성분계 촉매의 특성과 산소 제거 능력을 비교하였다. CuO와 Al2O3의 비율이 8 : 2인 촉매의 환원성이 가장 높았는데, 이는 CuO의 분산도가 가장 높기 때문이다. 결과적으로, 2성분계 촉매 중에서 CuO와 Al2O3의 비율이 8 : 2 인 촉매의 산소 제거 능력이 가장 우수한 것으로 나타났다. CuO : Al2O3 의 비율이 8 : 2인 촉매에 ZnO를 2 wt% 넣어준 촉매가 3성분계 촉매 중에는 가장 우수한 산소제거 능력을 보였으며, 이는 뛰어난 환원성에 기인한다고 할 수 있다. 또한 이 촉매는 재생 실험을 통해서도 산소 제거능력이 유지된다는 것을 확인하였다.
Since the active matrix organic light-emitting diode (AMOLED) encapsulation process is very vulnerable to moisture and oxygen, high-purity nitrogen with minimal moisture and oxygen must be used. In this study, a copper-based catalyst used to remove oxygen from nitrogen in the AMOLED encapsulation process was optimized. Two-component and three-component catalysts composed of CuO, Al2O3, or ZnO were prepared through a co-precipitation method. The prepared catalysts were characterized by using BET, XRD, TPR, and XRF analysis. In order to verify the oxygen removal performance of the catalyst, several catalytic reactions were conducted in a fixed bed reactor, and the corresponding oxygen contents were measured through an oxygen analyzer. In addition, reusability of the catalysts was proven through repetitive regeneration. The properties and oxygen removal capacity of the catalysts prepared with CuO and Al2O3 ratios of 6 : 4, 7 : 3, and 8 : 2 were compared. The number of active sites of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the highest among the 2-component catalysts. Moreover, the reducibility of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best as it had the highest CuO dispersion. As a result, the oxygen removal ability of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best among the 2-component catalysts. The best oxygen removal capacity was obtained when 2wt% of ZnO was added to the sub-optimized catalyst (i.e., CuO : Al2O3 =8 : 2) probably due to its outstanding reducibility. Furthermore, the optimized catalyst kept its performance during a couple of regeneration tests.
  1. Kruger BO, U.S. Patent No. 4,034,062 (1977).
  2. Golden TC, Johnson CH, U.S. Patent No. 5,536,302 (1996).
  3. Hsiung THL, Machado JRS, Schwarz A, U.S. Patent No. 5,737,941 (1998).
  4. Hsiung THL, Wallace JB, U.S. Patent No. 5,993,760 (1999).
  5. Jain R, Tseng JK, U.S. Patent No. 6,113,869 (2000).
  6. Tom GM, Brown DW, U.S. Patent No. 5,015,411 (1991).
  7. Sivaraj C, Kantarao P, Appl. Catal., 45(1), 103 (1988)
  8. Rakoczy J, Nizioł J, Wieczorek-Ciurowa K, Dulian P, React. Kinet. Mech. Catal., 108(1), 81 (2013)
  9. Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G, J. Catal., 228(1), 43 (2004)
  10. Chang FW, Kuo WY, Yang HC, Appl. Catal. A: Gen., 288(1-2), 53 (2005)
  11. Zhang XRR, Shi PF, Zhao JX, Zhao MY, Liu CT, Fuel Process. Technol., 83(1-3), 183 (2003)
  12. Perez-Hernandez R, Galicia GM, Anaya DM, Palacios J, Angeles-Chavez C, Arenas-Alatorre J, Int. J. Hydrog. Energy, 33(17), 4569 (2008)
  13. Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schlogl R, Ressler T, Appl. Catal. A: Gen., 348(2), 153 (2008)
  14. Lin KS, Pan CY, Chowdhury S, Lu W, Yeh CT, Thin Solid Films, 519(15), 4681 (2011)
  15. Yang HM, Chan MK, Catal. Commun., 12(15), 1389 (2011)
  16. Avgouropoulos G, Ioannides T, Papadopoulou C, Batista J, Hocevar S, Matralis HK, Catal. Today, 75(1-4), 157 (2002)
  17. Sa S, Silva H, Brandao L, Sousa JM, Mendes A, Appl. Catal. B: Environ., 99(1-2), 43 (2010)
  18. Patel S, Pant KK, J. Porous Mat., 13(3), 373 (2006)
  19. Wang L, Ding W, Liu Y, Fang W, Yang Y, J. Nat. Gas Chem., 19(5), 487 (2010)
  20. Meille V, Appl. Catal. A: Gen., 315, 1 (2006)
  21. Lin KS, Chowdhury S, Yeh HP, Hong WT, Yeh CT, Catal. Today, 164(1), 251 (2011)
  22. Mrad M, Gennequin C, Aboukais A, Abi-Aad E, Catal. Today, 176(1), 88 (2011)
  23. Dow WP, Wang YP, Huang TJ, J. Catal., 160(2), 155 (1996)
  24. Hayakawa T, Harihara H, Andersen AG, York APE, Suzuki K, Yasuda H, Takehira K, Angew. Chem.-Int. Edit., 35(2), 192 (1996)
  25. Wu GS, Wang LC, Liu YM, Cao Y, Dai WL, He HY, Fan KN, Appl. Surf. Sci., 253(2), 974 (2006)
  26. Castricum HL, Bakker H, van der Linden B, Poels EK, J. Phys. Chem. B, 105(33), 7928 (2001)
  27. Fisher IA, Bell AT, J. Catal., 184(2), 357 (1999)