화학공학소재연구정보센터
Clean Technology, Vol.27, No.1, 69-78, March, 2021
Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응
Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts
E-mail:
초록
팜유(palm oil)와 캐슈넛 껍질액(cashew nut shell liquid, CNSL)과 같은 식물유는 한국에서 수송용 바이오-디젤 혹은 발전용 바이오-중유의 주요 원료로서 사용되고 있다. 그러나, 이들은 탄화수소의 이중결합에 의한 높은 불포화도와 더불어 카르복실 산에 기인한 높은 산소의 함량으로 인하여 연료유로서의 적용 범위에 한계가 있다. 이러한 관점에서, 본 연구는 팜유와 CNSL 이 1/1 v/v%으로 이루어진 혼합 바이오오일에 포함된 불포화탄화수소를 포화시키고 산소 성분을 제거하기 위한 수소화처리 반응을 단일금속촉매(Ni과 Cu)와 이원금속촉매(Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd와 Ni-Pt) 들을 적용하여 완화된 반응조건(온도 250 ~ 400 ℃, 압력 5 ~ 80 bar와 LHSV 1 h-1) 하에서 수행하였다. Ni 활성성분에 대한 귀금속과 전이금속의 첨가는 수소화반응(HYD)과 탈산소반응(HDO)의 두 반응에 대한 활성을 증가시키는 시너지 효과를 보였다. 가장 활성이 뛰어난 유망한 촉매는 Ni-Cu/γ-Al2O3으로서 Ni/Cu의 원소비가 9/1 ~ 1/4의 넓은 범위에서 HYD반응과 HDO반응에 대한 전환율이 각각 90 ~ 93%와 95 ~ 99%을 보였다. 이와 같이 Ni/Cu의 원소 비율이 넓은 범위에서 일정한 촉매반응활성을 보임에 따라 전형적인 구조비민감성 반응임을 알 수 있다. 그리고, 수소화처리 반응에 의해 정제된 혼합 바이오오일은 원료 혼합 바이오오일에 비해 요오드가, 산가 및 동점도가 크게 낮아졌으며, 고위발열량은 약 10% 증가되었다.
Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/γ-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.
  1. Jang EJ, Lee ME, Park JY, Min KI, Yim ES, Ha JH, Lee BH, J. Korean Oil Chem Soc., 32(1), 136 (2015)
  2. Jiang X, Ellis N, Energy Fuels, 24(2), 1358 (2010)
  3. Rogers KA, Zheng Y, ChemSusChem, 9, 1750 (2016)
  4. Guzman A, Torres JE, Prada LP, Nunez ML, Catal. Today, 156(1-2), 38 (2010)
  5. Raghavendra PSA, Int. J. Sci. Res., 3(7), 2028 (2014)
  6. Gashaw A, Lakachew A, Int. J. Sci. Environ Technol, 3(4), 1544 (2014)
  7. Bhanushali JT, Kainthla I, Keri RS, Nagaraja BM, ChemistrySelect, 1(13), 3839-3853 (2016).
  8. Wilson K, Lee AF, Dacquin JP, Springer, 263-304. New York, (2012).
  9. Gong SF, Shinozaki A, Shi ML, Qian EW, Energy Fuels, 26(4), 2394 (2012)
  10. Vlasova EN, Deliy IV, Nuzhdin AL, Aleksandrov PV, Gerasimov EY, Aleshina GI, Bukhtiyarova GA, Kinet. Catal., 55(4), 481 (2014)
  11. Baldauf E, Sievers A, Willner T, Int. J. Energy Environ. Eng., 7(3), 273 (2016)
  12. Ponec V, Appl. Catal. A: Gen., 222(1-2), 31 (2001)
  13. Gao F, Goodman DW, Chem. Soc. Rev., 41(24), 8009 (2012)
  14. Vu BK, Song MB, Ahn IY, Suh YW, Suh DJ, Kim WI, Koh HL, Choi YG, Shin EW, Appl. Catal. A: Gen., 400(1-2), 25 (2011)
  15. Sachtler WMH, Catal. Rev. Sci. Eng., 14(1), 193 (1976)
  16. Margitfalvi J, Guczi L, Weiss AH, J. Catal., 72(2), 185 (1981)
  17. Cheng SY, Wei L, Julson J, Muthukumarappan K, Kharel PR, Boakye E, Fuel Process. Technol., 162, 78 (2017)
  18. Yu X, Chen J, Ren T, RSC Adv., 4(87), 46427 (2014)
  19. Cepeda EA, Calvo B, Sierra I, Iriarte-Velasco U, Korean J. Chem. Eng., 33(1), 80 (2016)
  20. Choi JS, Zacher AH, Wang HM, Olarte MV, Armstrong BL, Meyer HM, Soykal II, Schwartz V, Energy Fuels, 30(6), 5016 (2016)
  21. Agnelli M, Mirodatos C, J. Catal., 192(1), 204 (2000)
  22. Cho KH, Kang SE, Park JH, Cho JH, Shin CH, Clean Technol., 18(2), 162 (2012)
  23. Saw ET, Oemar U, Tan XR, Du Y, Borgna A, Hidajat K, Kawi S, J. Catal., 314, 32 (2014)
  24. Dominguez-Barroso MV, Herrera C, Larrubia MA, Alemany LJ, Fuel Process. Technol., 148, 110 (2016)
  25. Cheng SY, Wei L, Julson J, Muthukumarappan K, Kharel PR, Boakye E, Fuel Process. Technol., 162, 78 (2017)
  26. Khromova SA, Smirnov AA, Bulavchenko OA, Saraev AA, Kaichev VV, Reshetnikov SI, Yakovlev VA, Appl. Catal. A: Gen., 470, 261 (2014)
  27. Ameen M, Azizan MT, Ramli A, Yusup S, Yasir M, Procedia Eng., 148, 64 (2016)
  28. Yadav GD, Kharkara MR, Appl. Catal. A: Gen., 126(1), 115 (1995)
  29. Asedegbega-Nieto E, Bachiller-Baeza B, Guerrero-Ruiz A, Rodriguez-Ramos I, Appl. Catal. A: Gen., 303(1), 88 (2006)
  30. Satterfield CN, “Heterogeneous Catalysis in Industrial Practice,” McGrow-Hill, New York (1984).
  31. Takeuchi T, Sakaguchi M, Miyoshi I, Takabatake T, Bull. Chem. Soc. Jpn., 35(8), 1390 (1962)
  32. Van der Plank P, Sachtler WMH, J. Catal., 7(3), 300 (1967)
  33. Li M, Xinga S, Yanga L, Fua J, Lva P, Wanga Z, Yuan Z, Appl. Catal. A: Gen., 587, 117112 (2019)