- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.31, No.3, 115-121, March, 2021
Optimal Porous Structure of MnO2/C Composites for Supercapacitors
E-mail:
MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.
- Frackowiak E, Phys. Chem. Chem. Phys., 9, 1774 (2007)
- Wang GP, Zhang L, Zhang JJ, Chem. Soc. Rev., 41, 797 (2012)
- Hou Y, Cheng YW, Hobson T, Liu J, Nano Lett., 10, 2727 (2010)
- Chen W, Fan Z, Gu L, Bao X, Wang C, Chem. Commun., 46, 3905 (2010)
- Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F, Adv. Funct. Mater., 21(12), 2366 (2011)
- Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F, Carbon, 48, 3825 (2010)
- Wu ZS, Ren WC, Wang DW, Li F, Liu BL, Cheng HM, Acs Nano, 4, 5835 (2010)
- Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, McDonough JR, Cui X, Cui Y, Bao ZN, Nano Lett., 11, 2905 (2011)
- Zhai T, Wang FX, Yu MH, Xie SL, Liang CL, Li C, Xiao FM, Tang RH, Wu QX, Lu XH, Tong YX, Nanoscale, 5, 6790 (2013)
- Liu MX, Gan LH, Xiong W, Xu ZJ, Zhu DZ, Chen LW, J. Mater. Chem. A, 2, 2555 (2014)
- Zhao X, Zhang LL, Murali S, Stoller MD, Zhang QH, Zhu YW, Ruoff RS, Acs Nano, 6, 5404 (2012)
- Wang CC, Chen HC, Lu SY, Chem. - Eur. J., 20, 517 (2014)
- Jiang H, Ma J, Li CZ, Adv. Mater., 24(30), 4197 (2012)
- Li ZP, Wang JQ, Liu S, Liu XH, Yang SR, J. Power Sources, 196(19), 8160 (2011)
- Yang CZ, Zhou M, Xu Q, Phys. Chem. Chem. Phys., 15, 19730 (2013)
- Zhu SM, Zhou HA, Hibino M, Honma I, Ichihara M, Adv. Funct. Mater., 15(3), 381 (2005)
- Dong XP, Shen WH, Gu JL, Xiong LM, Zhu YF, Li Z, Shi JL, J. Phys. Chem. B, 110(12), 6015 (2006)
- Al-Muhtaseb SA, Ritter JA, Adv. Mater., 15(2), 101 (2003)
- Merzbacher CI, Meier SR, Pierce JR, Korwin ML, J. Non-Cryst. Solids, 285, 210 (2001)
- Pekala RW, J. Mater. Sci., 24, 3221 (1989)
- Pekala RW, Alviso CT, Kong FM, Hulsey SS, J. Non-Cryst. Solids, 145, 90 (1992)
- Tsuchiya T, Mori T, Iwamura S, Ogino I, Mukai SR, Carbon, 76, 240 (2014)
- Zhang JH, Li YB, Wang L, Zhang CB, He H, Catal. Sci. Technol., 5, 2305 (2015)