Korean Journal of Materials Research, Vol.31, No.3, 162-171, March, 2021
유기 물질을 사용한 구리박막의 건식 식각에 대한 헥사플루오로이소프로판올 첨가의 영향
Effect of Hexafluoroisopropanol Addition on Dry Etching of Cu Thin Films Using Organic Material
E-mail:
Dry etching of copper thin films is performed using high density plasma of ethylenediamine (EDA)/ hexafluoroisopropanol (HFIP)/Ar gas mixture. The etch rates, etch selectivities and etch profiles of the copper thin films are improved by adding HFIP to EDA/Ar gas. As the EDA/HFIP concentration in EDA/HFIP/Ar increases, the etch rate of copper thin films decreases, whereas the etch profile is improved. In the EDA/HFIP/Ar gas mixture, the optimal ratio of EDA to HFIP is investigated. In addition, the etch parameters including ICP source power, dc-bias voltage, process pressure are varied to examine the etch characteristics. Optical emission spectroscopy results show that among all species, [CH], [CN] and [H] are the main species in the EDA/HFIP/Ar plasma. The X-ray photoelectron spectroscopy results indicate the formation of CuCN compound and C-N-H-containing polymers during the etching process, leading to a good etch profile. Finally, anisotropic etch profiles of the copper thin films patterned with 150 nm scale are obtained in EDA/HFIP/Ar gas mixture.
Keywords:copper;inductively coupled plasma reactive ion etching;ethylenediamine;hexafluoroisopropanol;etch profile
- Rosenberg R, Edelstein DC, Hu CK, Rodbell KP, Annu. Rev. Mater. Sci., 30, 229 (2000)
- Murarka SP, Hymes SW, Crit. Rev. Solid State Mat. Sci., 20, 87 (1995)
- Chen F, Gardner D, IEEE Electron Device Lett., 19, 508 (1998)
- Rossnagel SM, Kuan TS, J. Vac. Sci. Technol. B, 22(1), 240 (2004)
- Zhang W, Brongersma SH, Heylen N, Beyer G, Vandervorst W, Maex K, J. Electrochem. Soc., 152(12), C832 (2005)
- Traving M, Schindler G, Engelhardt M, J. Appl. Phys., 100, 094325 (2006)
- Lee S, Kuo Y, J. Electrochem. Soc., 148(9), G524 (2001)
- Lee S, Kuo Y, Thin Solid Films, 457(2), 326 (2004)
- Lee SK, Chun SS, Hwang CY, Lee WJ, Jpn. J. Appl. Phys., 36, 50 (1997)
- Wu F, Levitin G, Hess DW, J. Vac. Sci. Technol. B, 29, 011013 (2011)
- Kang SW, Kim HW, Rhee SW, J. Vac. Sci. Technol. B, 17, 154 (1999)
- Lim ET, Ryu JS, Chung CW, Thin Solid Films, 665, 51 (2018)
- Lim ET, Ryu JS, Choi JS, Chung CW, Vacuum, 167, 145 (2019)
- Ryu JS, Lim ET, Choi JS, Chung CW, Thin Solid Films, 672, 55 (2019)
- Cha MH, Lim ET, Park SY, Lee JS, Chung CW, Vacuum, 181, 109421 (2020)
- Clay KJ, Speakman SP, Amaratunga GAJ, Silva SRP, J. Appl. Phys., 79, 7227 (1996)
- Zimmermann S, Ahner N, Blaschta F, Schaller M, Rulke M, Schulz SE, Gessner T, Microelectron. Eng., 87, 337 (2010)
- Poulston S, Parlett PM, Stone P, Bowker M, Surf. Interface Anal., 24, 811 (1996)
- Cano A, Avila Y, Avila M, Reguera E, J. Solid State Chem., 276, 339 (2019)
- Cano E, Bastidas JM, Polo JL, Mora N, J. Electrochem. Soc., 148(11), B431 (2001)
- Beamson G, Briggs D, p.182, John Wiley & Sons, New York (1992).
- Furukawa M, Fujisawa H, Katano S, Ogasawara H, Kim Y, Komeda T, Nilsson A, Kawai M, Surf. Sci., 532, 261 (2003)
- Allen GC, Sorbello F, Altavilla C, Castorina A, Ciliberto E, Thin Solid Films, 483(1-2), 306 (2005)
- Kim HW, Lee NE, J. Vac. Sci. Technol. B, 28(4), 715 (2010)