화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.3, 162-171, March, 2021
유기 물질을 사용한 구리박막의 건식 식각에 대한 헥사플루오로이소프로판올 첨가의 영향
Effect of Hexafluoroisopropanol Addition on Dry Etching of Cu Thin Films Using Organic Material
E-mail:
Dry etching of copper thin films is performed using high density plasma of ethylenediamine (EDA)/ hexafluoroisopropanol (HFIP)/Ar gas mixture. The etch rates, etch selectivities and etch profiles of the copper thin films are improved by adding HFIP to EDA/Ar gas. As the EDA/HFIP concentration in EDA/HFIP/Ar increases, the etch rate of copper thin films decreases, whereas the etch profile is improved. In the EDA/HFIP/Ar gas mixture, the optimal ratio of EDA to HFIP is investigated. In addition, the etch parameters including ICP source power, dc-bias voltage, process pressure are varied to examine the etch characteristics. Optical emission spectroscopy results show that among all species, [CH], [CN] and [H] are the main species in the EDA/HFIP/Ar plasma. The X-ray photoelectron spectroscopy results indicate the formation of CuCN compound and C-N-H-containing polymers during the etching process, leading to a good etch profile. Finally, anisotropic etch profiles of the copper thin films patterned with 150 nm scale are obtained in EDA/HFIP/Ar gas mixture.
  1. Rosenberg R, Edelstein DC, Hu CK, Rodbell KP, Annu. Rev. Mater. Sci., 30, 229 (2000)
  2. Murarka SP, Hymes SW, Crit. Rev. Solid State Mat. Sci., 20, 87 (1995)
  3. Chen F, Gardner D, IEEE Electron Device Lett., 19, 508 (1998)
  4. Rossnagel SM, Kuan TS, J. Vac. Sci. Technol. B, 22(1), 240 (2004)
  5. Zhang W, Brongersma SH, Heylen N, Beyer G, Vandervorst W, Maex K, J. Electrochem. Soc., 152(12), C832 (2005)
  6. Traving M, Schindler G, Engelhardt M, J. Appl. Phys., 100, 094325 (2006)
  7. Lee S, Kuo Y, J. Electrochem. Soc., 148(9), G524 (2001)
  8. Lee S, Kuo Y, Thin Solid Films, 457(2), 326 (2004)
  9. Lee SK, Chun SS, Hwang CY, Lee WJ, Jpn. J. Appl. Phys., 36, 50 (1997)
  10. Wu F, Levitin G, Hess DW, J. Vac. Sci. Technol. B, 29, 011013 (2011)
  11. Kang SW, Kim HW, Rhee SW, J. Vac. Sci. Technol. B, 17, 154 (1999)
  12. Lim ET, Ryu JS, Chung CW, Thin Solid Films, 665, 51 (2018)
  13. Lim ET, Ryu JS, Choi JS, Chung CW, Vacuum, 167, 145 (2019)
  14. Ryu JS, Lim ET, Choi JS, Chung CW, Thin Solid Films, 672, 55 (2019)
  15. Cha MH, Lim ET, Park SY, Lee JS, Chung CW, Vacuum, 181, 109421 (2020)
  16. Clay KJ, Speakman SP, Amaratunga GAJ, Silva SRP, J. Appl. Phys., 79, 7227 (1996)
  17. Zimmermann S, Ahner N, Blaschta F, Schaller M, Rulke M, Schulz SE, Gessner T, Microelectron. Eng., 87, 337 (2010)
  18. Poulston S, Parlett PM, Stone P, Bowker M, Surf. Interface Anal., 24, 811 (1996)
  19. Cano A, Avila Y, Avila M, Reguera E, J. Solid State Chem., 276, 339 (2019)
  20. Cano E, Bastidas JM, Polo JL, Mora N, J. Electrochem. Soc., 148(11), B431 (2001)
  21. Beamson G, Briggs D, p.182, John Wiley & Sons, New York (1992).
  22. Furukawa M, Fujisawa H, Katano S, Ogasawara H, Kim Y, Komeda T, Nilsson A, Kawai M, Surf. Sci., 532, 261 (2003)
  23. Allen GC, Sorbello F, Altavilla C, Castorina A, Ciliberto E, Thin Solid Films, 483(1-2), 306 (2005)
  24. Kim HW, Lee NE, J. Vac. Sci. Technol. B, 28(4), 715 (2010)