화학공학소재연구정보센터
Energy & Fuels, Vol.34, No.12, 15322-15331, 2020
Effect of Phosphate Pretreatments on Properties of Pyrolytic Products from Heavy-Metal-Contaminated Biomass
Vegetation has successfully been used for remediation of heavy-metal-contaminated soils (phytoremediation). The heavy-metal-rich biomass after phytoremediation can be processed by pyrolysis, achieving bioenergy production and pollutant control. The pretreatment of the heavy-metal-rich biomass prior to pyrolysis, as an emerging factor, needs to be investigated. For this purpose, heavy-metal-rich biomass obtained from phytoremediation was engineered by impregnating with four phosphates (KH2PO4, K2HPO4, NaH2PO4, and Na2HPO4) prior to pyrolysis in the temperature range of 300-700 degrees C. The untreated (control) and water-wash-treated biomass were employed as references. Results showed that impregnated K2HPO4 and Na2HPO4 catalyzed the pyrolysis process, reducing the temperature for the highest mass loss rate from 343 degrees C in the control to similar to 306 degrees C. The heavy metals enriched in the control also catalyzed the pyrolysis process. The bio-oils produced from the phosphate pretreatments contained a higher proportion of phenolic compounds while lower ketones compared to the control. Notably, upon the phosphate pretreatment, the heavy metal recoveries in the biochars at 500 degrees C were significantly increased, with more than 80% of As and more than 90% of Pb and Zn sequestrated in the solid products. This study showed that the application of phosphates as the pretreatment method catalyzed the pyrolysis of the heavy-metal-rich biomass, enhanced the heavy metal recovery in biochars, and thus provided a safe and value-added way to the phytoremediation-pyrolysis scheme.