화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.59, No.50, 21768-21778, 2020
Thermal, Near-Infrared Light, and Amine Solvent Triple-Responsive Recyclable Imine-Type Vitrimer: Shape Memory, Accelerated Photohealing/Welding, and Destructing Behaviors
Currently, polyimine vitrimer is restricted by unitary functionality and poor responsiveness to external stimuli, thus showing limited potentials for broader applications as a kind of smart material. Herein, we reported a thermal, near-infrared light, and amine solvent triple-responsive polyimine vitrimer (ACAT-vitrimer) by incorporating oligoaniline into a traditional imine-type vitrimer through the polycondensation reaction of terephthaldehyde, m-xylylene diamine, and tris (2-aminoethyl) amine. The material exhibited superior mechanical properties, thermal stability, rheology, welding property, and recyclability. More interestingly, the ACAT vitrimer also demonstrated a unique photothermal conversion property. Compared with traditional hot-pressing method, the photoinduced shape memory behavior of the ACAT-vitrimer was much more controllable and efficient. Additionally, the ACAT-vitrimer exhibited accelerated photohealing/welding and complete destructing behaviors under the irradiation of near-infrared (NIR) light, which was reported for the first time as a kind of imine-based vitrimer. Such easy fabrication strategy combining dynamic covalent chemistry with a spatiotemporally controllable photothermal effect provided an efficient approach to convert the conventional imine-type vitrimer into stimulus-responsive materials for broader applications.