Applied Chemistry for Engineering, Vol.32, No.2, 163-167, April, 2021
금-펩타이드 하이브리드 나노입자의 제조와 메틸렌 블루의 촉매 환원 응용
Preparation of Gold-Peptide Hybrid Nanoparticles and Its Applications in Catalytic Reduction of Methylene Blue
E-mail:
초록
본 연구에서는 타이로신이 풍부한 펩타이드, Tyr-Tyr-Leu-Tyr-Tyr (YYLYY)를 이용하여 금 나노입자를 담지한 균일한금-펩타이드 계층적 초분자 구조체의 합성에 대해 연구하였다. 펩타이드의 광가교 반응을 통해 다이타이로신 결합으로 자기조립된 펩타이드 나노입자를 합성하였고, 타이로신의 생체 광물화 특성을 이용하여 금-펩타이드 하이브리드 나노입자를 친환경적 방법으로 합성하였다. 합성된 금-펩타이드 하이브리드 나노입자는 투과 전자 현미경(TEM), 주사투과 전자 현미경(SEM), 동적 광산란(DLS), 자외선-가시광선 분광광도계(UV-Vis spectroscopy), 에너지 분산 X선 분광법(STEM-EDS), X선 회절 분석법(XRD)을 통해 분석하였다. 또한 합성된 금-펩타이드 하이브리드 나노입자는 메틸렌블루의 환원 반응에서 13.4 × 10-3 s-1의 반응속도 상수를 가지는 촉매 특성을 확인하였다.
In the present work, we studied a method for the synthesis of uniform gold-peptide hierarchical superstructures using tyrosine rich peptide, Tyr-Tyr-Leu-Tyr-Tyr (YYLYY). Peptide nanoparticles self-assembled by dityrosine bonds were synthesized through the photo-crosslinking reaction of the peptide, and gold-peptide hybrid nanoparticles were synthesized using biomineralization properties of tyrosine in a green synthetic manner. The synthesized gold-peptide hybrid nanoparticles were then characterized by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, UV-vis spectroscopy, scanning transmission electron microscopy-energy dispersive X-ray spectroscopy, and X-ray diffraction. Furthermore, the catalytic activity of gold-peptide hybrid nanoparticles was confirmed by the reduction reaction of methylene blue where the catalytic reaction rate constant was 13.4 × 10-3 s-1.
- Zan GT, Wu QS, Adv. Mater., 28(11), 2099 (2016)
- Huang J, Lin L, Sun D, Chen H, Yang D, Li Q, Chem. Sov. Rev., 44, 6330 (2015)
- Dickerson MB, Sandhage KH, Naik RR, Chem. Rev., 108(11), 4935 (2008)
- Tan YN, Lee JY, Wang DIC, J. Am. Chem. Soc., 132(16), 5677 (2010)
- Baek K, Hwang I, Roy I, Shetty D, Kim K, Accounts Chem. Res., 48, 2221 (2015)
- Luo TZ, Kiick KL, J. Am. Chem. Soc., 137(49), 15362 (2015)
- Fancy DA, Kodadek T, Proc. Natl. Acad. Sci. U. S. A., 96, 6020 (1999)
- Lee J, Ju M, Cho OH, Kim Y, Nam KT, Adv. Sci., 6, 180125 (2019)
- Ramezani F, Amanlou M, Rafii-Tabar H, Amino Acids, 46, 911 (2014)
- Min KI, Kim DH, Lee HJ, Lin L, Kim DP, Angew. Chem.-Int. Edit., 130, 5732 (2018)
- Lu J, Fang J, Li J, Wang C, He X, Zhu L, Xu Z, Zeng H, ACS Appl. Nano Mater., 3, 156 (209)
- Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M, Langmuir, 20(18), 7825 (2004)
- Xie J, Lee JY, Wang DI, Ting YP, ACS Nano, 1, 429 (2007)
- Si S, Bhattacharjee RR, Banerjee A, Mandal TK, Chem. Eur. J., 12, 1256 (2006)
- Ding Y, Li Y, Qin M, Cao Y, Wang W, Langmuir, 29(43), 13299 (2013)
- Lu J, Fang J, Li J, Wang C, He Z, Zhu L, Xu Z, Zeng H, ACS Appl. Nano Mater., 3, 156 (2019)
- Wang N, Zhang ZR, Huang JR, Hu YX, Chem. Eng. Sci., 203, 312 (2019)
- Yao T, Cui T, Wang H, Xu L, Cui F, Wu J, Nanoscale, 6, 7666 (2014)
- Xiao F, Ren H, Zhou H, Wang H, Wang N, Pan D, ACS Appl. Nano Mater., 2, 5420 (2019)