화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.587, 260-270, 2021
Hierarchical NiCo2Se4 nanoneedles/nanosheets with N-doped 3D porous graphene architecture as free-standing anode for superior sodium ion batteries
In order to cope with the problem of insufficient lithium metal reserves, sodium ion batteries (SIBs) are proposed and extensively studied for the next-generation batteries. In our work, hierarchical NiCo2Se4 nanoneedles/nanosheets are deposited on the skeleton of N-doped three dimensional porous graphene (NPG) by a convenient solvothermal method and subsequent gas-phase selenization process. Compared with NiCo2Se4 powder, the optimized NiCo2Se4/N-doped porous graphene composite (denoted as NCS@NPG) as self-supporting anode exhibits the excellent electrode activity for SIBs, with a specific capacity of 500 mAh/g and 257 mAh/g at a current density of 0.2 A/g and 6.4 A/g, respectively. The high specific capacity as well as rate capacity can be attributed to the three-dimensional graphene skeleton with high electrical conductivity and pore structure, which provides convenient ion and electron transmission channels. (c) 2020 Elsevier Inc. All rights reserved.