Journal of Colloid and Interface Science, Vol.587, 376-384, 2021
Yellow emission carbon dots for highly selective and sensitive OFF-ON sensing of ferric and pyrophosphate ions in living cells
A simple "OFF-ON" fluorescent system was proposed for selective and sensitive detection of ferric ion (Fe3+) and pyrophosphate (PPi) in living cells. The method was constructed based on the bright yellow emission of carbon dots (y-CDs), which were prepared using o-phenylenediamine (OPD) as the precursor via a facile hydrothermal treatment. The as-obtained y-CDs, with an average size of 2.6 nm, exhibited an excitation-independent emission peak at 574 nm. The fluorescence of y-CDs can be remarkably quenched by Fe3+ with high selectivity and sensitivity. Interestingly, the quenched fluorescence can be recovered regularly upon addition of PPi, showing a promising detection for PPi. The linear ranges for Fe3+ and PPi detections were 0.05-80 and 0.5-120 mu M, respectively, and the corresponding limit of detections (LODs) were 22.1 and 73.9 nM. As we proved the y-CDs have negligible cytotoxicity and excellent biocompatibility, further application to the fluorescence imaging of intracellular Fe(3+)and PPi were conducted, suggesting the prepared y-CDs can be used to monitor Fe3+ and PPi variation in living cells. Overall, our developed y-CDs-based OFF-ON switch fluorescent probe has the advantages of simplicity, agility, high sensitivity and selectivity, which provides a promising platform for environmental and biology applications, and paves a new avenue for monitoring the hydrolysis process of adenosine triphosphate disodium salt (ATP) by detection of PPi in organisms. (c) 2020 Elsevier Inc. All rights reserved.
Keywords:Pyrophosphate;Carbon dots;Fe3+ ions;Cell imaging;OFF-ON sensing;Fluorescence quenching;Fluorescence recovery