화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.586, 269-278, 2021
One-step synthesis of functional metal organic framework composite for the highly efficient adsorption of tylosin from water
Functional metal organic framework composite can effectively remove antibiotics from environmental water samples. However, designing excellent adsorbents with multiple active sites via a rapid one-step method is still a challenging problem. A novel metal organic framework composite (UiO-66-NH2-AMPS) was synthesized through one-step polymerization by adding functional monomer 2-acryla mide-2-methylpropanesulfonic acid (AMPS) during the preparation of UiO-66-NH2. The microstructure and morphology of the UiO-66-NH2-AMPS composite were characterized, and the adsorption performance towards tylosin (TYL) in water was explored by equilibrium adsorption experiment. The results illustrated that the adsorption equilibrium can be reached within 1 h, and the maximum binding amount of UiO-66-NH2-AMPS for TYL was 161.60 mg g(-1), which was approximately 2.1-329 times of that of the other adsorbents. The pseudo second-order kinetic and Liu isotherm model were suitable for the adsorption process, and thermodynamic study displayed that the adsorption of UiO-66-NH2-AMPS composite for TYL is spontaneous and endothermal. The infrared and X-ray photoelectron spectra exhibited that hydrogen bond and electrostatic interaction were the primary recognition force for TYL. The UiO-66-NH2-AMPS composite have been successfully applied to remove TYL from environmental water. After 5 cycles, the removal efficiency of UiO-66-NH2-AMPS was still above 91.30%. (C) 2020 Elsevier Inc. All rights reserved.