Journal of Colloid and Interface Science, Vol.586, 692-707, 2021
Construction of few-layered black phosphorus/graphite-like carbon nitride binary hybrid nanostructure for reducing the fire hazards of epoxy resin
Black phosphorus (BP) and graphite-like carbon nitride (g-C3N4) were combined to prepare BP-CN hybrid nanostructure through a simple self-assembly method assisted by ultra-sonication, and as-obtained materials were further used as fire retardants introduced into epoxy resin to fabricate EP/BP-CNx nanocomposites. It was found that the introduction of 2 wt% BP-CNx into EP contributed to considerable decrements in peak heat release rate (up to 47.72%) and total heat release (utmost to 49.60%) of composites, and LOI value increased from 25% to 31%. SSTF results revealed that the introducing of BP-CN can distinctly reduce the production of smoke. TG-IR results demonstrated that the addition of BP-CN0.5 and BP-CN2.0 into EP matrix exert different influences on the decomposition of resin. Analyses of residual chars further validated through adjusting the proportion of BP and CN can achieve different fire performances of matrix. This work illustrates that BP can reduce the fire hazards of EP, and the hybridization of CN can achieve better flame retarded efficiency, which provides a new strategy for black phosphorus to be used as a flame retardant. (C) 2020 Elsevier Inc. All rights reserved.