Journal of Colloid and Interface Science, Vol.584, 263-274, 2021
Transition metal-containing nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol for anion exchange membrane fuel cell application
Highly active electrocatalysts for electrochemical oxygen reduction reaction (ORR) were prepared by high-temperature pyrolysis from 5-methylresorcinol, Co and/or Fe salts and dicyandiamide, which acts simultaneously as a precursor for reactive carbonitride template and a nitrogen source. The electrocatalytic activity of the catalysts for ORR in alkaline solution was studied using the rotating disc electrode (RDE) method. The bimetallic catalyst containing iron and cobalt (FeCoNC-at) showed excellent stability and remarkable ORR performance, comparable to that of commercial Pt/C (20 wt%). The superior activity was attributed to high surface metal and nitrogen contents. The FeCoNC-at catalyst was further tested in anion exchange membrane fuel cell (AEMFC) with poly-(hexamethyl-p-terphenylbenzimidazolium) (HMT-PMBI) membrane, where a high value of peak power density (P-max = 415 mW cm(-2)) was achieved. (C) 2020 Elsevier Inc. All rights reserved.
Keywords:Oxygen reduction;Electrocatalysis;Alkaline membrane fuel cell;MNC catalysts;Non-precious metal catalysts;Carbonitride template